ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
Filter
  • PANGAEA  (306)
  • Copernicus Publications on behalf of the European Geosciences Union  (3)
  • Blackwell Science Ltd  (2)
Collection
Keywords
  • 1
    ISSN: 1365-2486
    Source: Blackwell Publishing Journal Backfiles 1879-2005
    Topics: Biology , Energy, Environment Protection, Nuclear Power Engineering , Geography
    Notes: In the nearshore coastal waters along the Antarctic Peninsula, a recurrent shift in phytoplankton community structure, from diatoms to cryptophytes, has been documented. The shift was observed in consecutive years (1991–1996) during the austral summer and was correlated in time and space with glacial melt-water runoff and reduced surface water salinities. Elevated temperatures along the Peninsula will increase the extent of coastal melt-water zones and the seasonal prevalence of cryptophytes. This is significant because a change from diatoms to cryptophytes represents a marked shift in the size distribution of the phytoplankton community, which will, in turn, impact the zooplankton assemblage. Cryptophytes, because of their small size, are not grazed efficiently by Antarctic krill, a keystone species in the food web. An increase in the abundance and relative proportion of cryptophytes in coastal waters along the Peninsula will likely cause a shift in the spatial distribution of krill and may allow also for the rapid asexual proliferation of carbon poor gelatinous zooplankton, salps in particular. This scenario may account for the reported increase in the frequency of occurrence and abundance of large swarms of salps within the region. Salps are not a preferred food source for organisms that occupy higher trophic levels in the food web, specifically penguins and seals, and thus negative feedbacks to the ecology of these consumers can be anticipated as a consequence of shifts in phytoplankton community composition.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 2
    ISSN: 1365-2486
    Source: Blackwell Publishing Journal Backfiles 1879-2005
    Topics: Biology , Energy, Environment Protection, Nuclear Power Engineering , Geography
    Notes: Ecosystem processes are important determinants of the biogeochemistry of the ocean, and they can be profoundly affected by changes in climate. Ocean models currently express ecosystem processes through empirically derived parameterizations that tightly link key geochemical tracers to ocean physics. The explicit inclusion of ecosystem processes in models will permit ecological changes to be taken into account, and will allow us to address several important questions, including the causes of observed glacial–interglacial changes in atmospheric trace gases and aerosols, and how the oceanic uptake of CO2 is likely to change in the future. There is an urgent need to assess our mechanistic understanding of the environmental factors that exert control over marine ecosystems, and to represent their natural complexity based on theoretical understanding. We present a prototype design for a Dynamic Green Ocean Model (DGOM) based on the identification of (a) key plankton functional types that need to be simulated explicitly to capture important biogeochemical processes in the ocean; (b) key processes controlling the growth and mortality of these functional types and hence their interactions; and (c) sources of information necessary to parameterize each of these processes within a modeling framework. We also develop a strategy for model evaluation, based on simulation of both past and present mean state and variability, and identify potential sources of validation data for each. Finally, we present a DGOM-based strategy for addressing key questions in ocean biogeochemistry. This paper thus presents ongoing work in ocean biogeochemical modeling, which, it is hoped will motivate international collaborations to improve our understanding of the role of the ocean in the climate system.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 3
    Publication Date: 2022-05-25
    Description: © 2008 Author(s). This work is distributed under the Creative Commons Attribution License. The definitive version was published in Biogeosciences 5 (2008): 95-109, doi:10.5194/bg-5-95-2008
    Description: Due to the low atmospheric input of phosphate into the open ocean, it is one of the key nutrients that could ultimately control primary production and carbon export into the deep ocean. The observed trend over the last 20 years has shown a decrease in the dissolved inorganic phosphate (DIP) pool in the North Pacific gyre, which has been correlated to the increase in di-nitrogen (N2) fixation rates. Following a NW-SE transect, in the Southeast Pacific during the early austral summer (BIOSOPE cruise), we present data on DIP, dissolved organic phosphate (DOP) and particulate phosphate (PP) pools along with DIP turnover times (TDIP) and N2 fixation rates. We observed a decrease in DIP concentration from the edges to the centre of the gyre. Nevertheless the DIP concentrations remained above 100 nmol L−1 and T DIP was more than 6 months in the centre of the gyre; DIP availability remained largely above the level required for phosphate limitation to occur and the absence of Trichodesmium spp and low nitrogen fixation rates were likely to be controlled by other factors such as temperature or iron availability. This contrasts with recent observations in the North Pacific Ocean at the ALOHA station and in the western Pacific Ocean at the same latitude (DIAPALIS cruises) where lower DIP concentrations (〈20 nmol L−1) and T DIP 〈50 h were measured during the summer season in the upper layer. The South Pacific gyre can be considered a High Phosphate Low Chlorophyll (HPLC) oligotrophic area, which could potentially support high N2 fixation rates and possibly carbon dioxide sequestration, if the primary ecophysiological controls, temperature and/or iron availability, were alleviated.
    Description: This research was funded by the Centre National de la Recherche Scientifique (CNRS), the Institut des Sciences de l’Univers (INSU), the Centre National d’Etudes Spatiales (CNES), the European Space Agency (ESA), The National Aeronautics and Space Administration (NASA) and the Natural Sciences and Engineering Research Council of Canada (NSERC). This work is funded in part by the French Research and Education council.
    Repository Name: Woods Hole Open Access Server
    Type: Article
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 4
    Publication Date: 2022-05-26
    Description: © The Author(s), 2016. This article is distributed under the terms of the Creative Commons Attribution License. The definitive version was published in Earth System Science Data 8 (2016): 235-252, doi:10.5194/essd-8-235-2016.
    Description: A compiled set of in situ data is important to evaluate the quality of ocean-colour satellite-data records. Here we describe the data compiled for the validation of the ocean-colour products from the ESA Ocean Colour Climate Change Initiative (OC-CCI). The data were acquired from several sources (MOBY, BOUSSOLE, AERONET-OC, SeaBASS, NOMAD, MERMAID, AMT, ICES, HOT, GeP&CO), span between 1997 and 2012, and have a global distribution. Observations of the following variables were compiled: spectral remote-sensing reflectances, concentrations of chlorophyll a, spectral inherent optical properties and spectral diffuse attenuation coefficients. The data were from multi-project archives acquired via the open internet services or from individual projects, acquired directly from data providers. Methodologies were implemented for homogenisation, quality control and merging of all data. No changes were made to the original data, other than averaging of observations that were close in time and space, elimination of some points after quality control and conversion to a standard format. The final result is a merged table designed for validation of satellite-derived ocean-colour products and available in text format. Metadata of each in situ measurement (original source, cruise or experiment, principal investigator) were preserved throughout the work and made available in the final table. Using all the data in a validation exercise increases the number of matchups and enhances the representativeness of different marine regimes. By making available the metadata, it is also possible to analyse each set of data separately. The compiled data are available at doi:10.1594/PANGAEA.854832 (Valente et al., 2015).
    Description: We thank NASA for project funding for data collection.
    Repository Name: Woods Hole Open Access Server
    Type: Article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 5
    Publication Date: 2022-05-26
    Description: © 2007 Author(s) et al. This is an open-access article distributed under the terms of a Creative Commons License. The definitive version was published in Biogeosciences 4 (2007): 941-956, doi:10.5194/bg-4-941-2007
    Description: Predicting heterotrophic bacteria and phytoplankton specific growth rates (μ) is of great scientific interest. Many methods have been developed in order to assess bacterial or phytoplankton μ. One widely used method is to estimate μ from data obtained on biomass or cell abundance and rates of biomass or cell production. According to Kirchman (2002), the most appropriate approach for estimating μ is simply to divide the production rate by the biomass or cell abundance estimate. Most methods using this approach to estimate μ are based on carbon (C) incorporation rates and C biomass measurements. Nevertheless it is also possible to estimate μ using phosphate (P) data. We showed that particulate phosphate (PartP) can be used to estimate biomass and that the P uptake rate to PartP ratio can be employed to assess μ. Contrary to other methods using C, this estimator does not need conversion factors and provides an evaluation of μ for both autotrophic and heterotrophic organisms. We report values of P-based μ in three size fractions (0.2–0.6; 0.6–2 and 〉2 μm) along a Southeast Pacific transect, over a wide range of P-replete trophic status. P-based μ values were higher in the 0.6–2 μm fraction than in the 〉2 μm fraction, suggesting that picoplankton-sized cells grew faster than the larger cells, whatever the trophic regime encountered. Picoplankton-sized cells grew significantly faster in the deep chlorophyll maximum layer than in the upper part of the photic zone in the oligotrophic gyre area, suggesting that picoplankton might outcompete 〉2 μm cells in this particular high-nutrient, low-light environment. P-based μ attributed to free-living bacteria (0.2-0.6 μm) and picoplankton (0.6–2 μm) size-fractions were relatively low (0.11±0.07 d−1 and 0.14±0.04 d−1, respectively) in the Southeast Pacific gyre, suggesting that the microbial community turns over very slowly.
    Description: This research was funded by the Centre National de la Recherche Scientifique (CNRS), the Institut des Sciences de l’Univers (INSU), the Centre National d’Etudes Spatiales (CNES), the European Space Agency (ESA), The National Aeronautics and Space Administration (NASA) and the Natural Sciences and Engineering Research Council of Canada (NSERC). This work is funded in part by the French Research and Education council.
    Repository Name: Woods Hole Open Access Server
    Type: Article
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 6
    Publication Date: 2023-01-13
    Description: Phytoplankton photosynthetic pigment concentrations from various expeditions, analysed by HPLC by the Laboratoire d'Oceanographie de Villefranche (LOV).
    Type: Dataset
    Format: application/zip, 42 datasets
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 7
    Publication Date: 2023-02-12
    Keywords: BIOSOPE_EGY; BIOSOPE_HLNC; BIOSOPE04-11-03; BIOSOPE04-11-04; BIOSOPE04-11-06; BIOSOPE04-11-08; BIOSOPE04-11-12; BIOSOPE04-11-21; BIOSOPE04-11-23; BIOSOPE04-11-24; BIOSOPE2004-11-05; BIOSOPE2004-11-09; BIOSOPE2004-11-22; Calculated after Luo et al. (2012); Calothrix, abundance expressed in number of nifH gene copies; Calothrix, associated species; Calothrix, biological trait, ratio expressed in mass of carbon per amount of nifH gene copies; CTD/Rosette; CTD-RO; Date/Time of event; DEPTH, water; Diazotrophs, total biomass as carbon; Event label; Fluorescence-based quantitative real-time PCR (qPCR); Heterocyst, biomass; Latitude of event; Longitude of event; MAREDAT_Diazotrophs_Collection; Mooring (long time); MOORY; South Pacific; Trichodesmium, abundance expressed in number of nifH gene copies; Trichodesmium, biomass as carbon; Trichodesmium abundance, total; Unicellular cyanobacteria, biomass; Unicellular cyanobacteria-A, abundance expressed in number of nifH gene copies; Unicellular cyanobacteria-A, biological trait, ratio expressed in mass of carbon per amount of nifH gene copies; Unicellular cyanobacteria-B, abundance expressed in number of nifH gene copies; Unicellular cyanobacteria-B, biological trait, ratio expressed in mass of carbon per amount of nifH gene copies
    Type: Dataset
    Format: text/tab-separated-values, 156 data points
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 8
    facet.materialart.
    Unknown
    PANGAEA
    In:  Supplement to: Sauzède, Raphaëlle; Lavigne, Héloïse; Claustre, Hervé; Uitz, Julia; Schmechtig, Catherine; D'Ortenzio, Fabrizio; Guinet, Christophe; Pesant, Stephane (2015): Vertical distribution of chlorophyll a concentration and phytoplankton community composition from in situ fluorescence profiles: a first database for the global ocean. Earth System Science Data, 7(2), 261-273, https://doi.org/10.5194/essd-7-261-2015
    Publication Date: 2023-02-24
    Description: The present data set includes 268,127 vertical in situ fluorescence profiles obtained from several available online databases and from published and unpublished individual sources. Metadata about each profiles are given in the file provided here in further details. The majority of profiles comes from the National Oceanographic Data Center (NODC) and the fluorescence profiles acquired by Bio-Argo floats available on the Oceanographic Autonomous Observations (OAO) platform (63.7% and 12.5% respectively). Different modes of acquisition were used to collect the data presented in this study: (1) CTD profiles are acquired using a fluorometer mounted on a CTD-rosette; (2) OSD (Ocean Station Data) profiles are derived from water samples and are defined as low resolution profiles; (3) the UOR (Undulating Oceanographic Recorder) profiles are acquired by a 〈fish〉 equipped with a fluorometer and towed by a research vessel; (4) PA profiles are acquired by autonomous platforms (here profiling floats or elephant seals equipped with a fluorometer). Data acquired from gliders are not included in the compilation.
    Keywords: Bio-Argo; French Bio-Argo project (funded by CNES-TOSCA); RemOcean; Remotely Sensed Biogeochemical Cycles in the Ocean
    Type: Dataset
    Format: application/zip, 639.3 MBytes
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 9
    facet.materialart.
    Unknown
    PANGAEA
    In:  Supplement to: Sauzède, Raphaëlle; Lavigne, Héloïse; Claustre, Hervé; Uitz, Julia; Schmechtig, Catherine; D'Ortenzio, Fabrizio; Guinet, Christophe; Pesant, Stephane (2015): Vertical distribution of chlorophyll a concentration and phytoplankton community composition from in situ fluorescence profiles: a first database for the global ocean. Earth System Science Data, 7(2), 261-273, https://doi.org/10.5194/essd-7-261-2015
    Publication Date: 2023-02-24
    Description: In vivo chlorophyll a fluorescence, a proxy of chlorophyll a concentration, is one of the most frequently measured biogeochemical property in the ocean. Thousands of profiles are available from historical databases and the integration of fluorescence sensors to autonomous platforms led to a significant increase of chlorophyll fluorescence profiles acquisition. To date, benefits of such numerous data available have not yet been included in global analysis. A total of 268,184 raw chlorophyll fluorescence profiles were collected and subjected to a 10-steps quality control procedure (see supplementary literature publication). The present data product was generated from the remaining 48,600 chlorophyll fluorescence profiles. These were inter-calibrated, converted to total chlorophyll a concentration and phytoplankton community composition (i.e. microphytoplankton, nanophytoplankton and picophytoplankton) using the FLAVOR method (see further details). The data span a time period of 1958-2015, with observations from all oceanic basins and all seasons, and with depths ranging from the surface to a median sampling maximum depth of around 700m. The present data product was obtained by modelling phytoplankton biomass and composition from in situ fluorescence profiles and therefore, individual profiles should NOT BE USED as discrete observations. The correct use of the present data product is to investigate regional or temporal trends, for example to improve the open ocean climatologies of chlorophyll a concentration. This data product is intended as a living data set, with the expectation to retrieve and model additional in situ chlorophyll fluorescence profiles, especially from autonomous acquisition platforms.
    Keywords: Bio-Argo; French Bio-Argo project (funded by CNES-TOSCA); RemOcean; Remotely Sensed Biogeochemical Cycles in the Ocean
    Type: Dataset
    Format: application/zip, 397 MBytes
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 10
    facet.materialart.
    Unknown
    PANGAEA
    In:  Supplement to: Bricaud, Annick; Morel, André; Babin, Marcel; Allali, Karima; Claustre, Hervé (1998): Variations of light absorption by suspended particles with chlorophyll a concentration in oceanic (case 1) waters: Analysis and implications for bio-optical models. Journal of Geophysical Research: Oceans, 103(C13), 31033-31044, https://doi.org/10.1029/98JC02712
    Publication Date: 2024-02-01
    Description: Spectral absorption coefficients of total particulate matter ap (lambda) were determined using the in vitro filter technique. The present analysis deals with a set of 1166 spectra, determined in various oceanic (case 1) waters, with field chl a concentrations ([chl]) spanning 3 orders of magnitude (0.02-25 mg/m**3). As previously shown [Bricaud et al., 1995, doi:10.1029/95JC00463] for the absorption coefficients of living phytoplankton a phi (lamda), the ap (labda) coefficients also increase nonlinearly with [chl]. The relationships (power laws) that link ap (lambda) and a phi (lambda) to [chl] show striking similarities. Despite large fluctuations, the relative contribution of nonalgal particles to total absorption oscillates around an average value of 25-30% throughout the [chl] range. The spectral dependence of absorption by these nonalgal particles follows an exponential increase toward short wavelengths, with a weakly variable slope (0.011 ± 0.0025/nm). The empirical relationships linking ap (lambda) to ([chl]) can be used in bio-optical models. This parameterization based on in vitro measurements leads to a good agreement with a former modeling of the diffuse attenuation coefficient based on in situ measurements. This agreement is worth noting as independent methods and data sets are compared. It is stressed that for a given ([chl]), the ap (lambda) coefficients show large residual variability around the regression lines (for instance, by a factor of 3 at 440 nm). The consequences of such a variability, when predicting or interpreting the diffuse reflectance of the ocean, are examined, according to whether or not these variations in ap are associated with concomitant variations in particle scattering. In most situations the deviations in ap actually are not compensated by those in particle scattering, so that the amplitude of reflectance is affected by these variations.
    Keywords: Biogeochemical Processes in the Oceans and Fluxes; CTD/Rosette; CTD-RO; JGOFS; Joint Global Ocean Flux Study; L Atalante; OLIPAC; OLIPAC_011; OLIPAC_012; OLIPAC_016; OLIPAC_021; OLIPAC_022; OLIPAC_026; OLIPAC_027; OLIPAC_031; OLIPAC_032; OLIPAC_036; OLIPAC_037; OLIPAC_041; OLIPAC_042; OLIPAC_046; OLIPAC_047; OLIPAC_051; OLIPAC_052; OLIPAC_056; OLIPAC_057; PROOF
    Type: Dataset
    Format: application/zip, 3 datasets
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...