ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    Publication Date: 2023-02-12
    Keywords: BIOSOPE_EGY; BIOSOPE_HLNC; BIOSOPE04-11-03; BIOSOPE04-11-04; BIOSOPE04-11-06; BIOSOPE04-11-08; BIOSOPE04-11-12; BIOSOPE04-11-21; BIOSOPE04-11-23; BIOSOPE04-11-24; BIOSOPE2004-11-05; BIOSOPE2004-11-09; BIOSOPE2004-11-22; Calculated after Luo et al. (2012); Calothrix, abundance expressed in number of nifH gene copies; Calothrix, associated species; Calothrix, biological trait, ratio expressed in mass of carbon per amount of nifH gene copies; CTD/Rosette; CTD-RO; Date/Time of event; DEPTH, water; Diazotrophs, total biomass as carbon; Event label; Fluorescence-based quantitative real-time PCR (qPCR); Heterocyst, biomass; Latitude of event; Longitude of event; MAREDAT_Diazotrophs_Collection; Mooring (long time); MOORY; South Pacific; Trichodesmium, abundance expressed in number of nifH gene copies; Trichodesmium, biomass as carbon; Trichodesmium abundance, total; Unicellular cyanobacteria, biomass; Unicellular cyanobacteria-A, abundance expressed in number of nifH gene copies; Unicellular cyanobacteria-A, biological trait, ratio expressed in mass of carbon per amount of nifH gene copies; Unicellular cyanobacteria-B, abundance expressed in number of nifH gene copies; Unicellular cyanobacteria-B, biological trait, ratio expressed in mass of carbon per amount of nifH gene copies
    Type: Dataset
    Format: text/tab-separated-values, 156 data points
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 2
    Publication Date: 2008-02-20
    Description: Iron is an essential nutrient involved in a variety of biological processes in the ocean, including photosynthesis, respiration and dinitrogen fixation. Atmospheric deposition of aerosols is recognized as the main source of iron for the surface ocean. In high nutrient, low chlorophyll areas, it is now clearly established that iron limits phytoplankton productivity but its biogeochemical role in low nutrient, low chlorophyll environments has been poorly studied. We investigated this question in the unexplored southeast Pacific, arguably the most oligotrophic area of the global ocean. Situated far from any continental aerosol source, the atmospheric iron flux to this province is amongst the lowest of the world ocean. Here we report that, despite low dissolved iron concentrations (~0.1 nmol l−1) across the whole gyre (3 stations located in the center and at the western and the eastern edges), primary productivity are only limited by iron availability at the border of the gyre, but not in the center. The seasonal stability of the gyre has apparently allowed for the development of populations acclimated to these extreme oligotrophic conditions. Moreover, despite clear evidence of nitrogen limitation in the central gyre, we were unable to measure dinitrogen fixation in our experiments, even after iron and/or phosphate additions, and cyanobacterial nif H gene abundances were extremely low compared to the North Pacific Gyre. The South Pacific gyre is therefore unique with respect to the physiological status of its phytoplankton populations.
    Print ISSN: 1726-4170
    Electronic ISSN: 1726-4189
    Topics: Biology , Geosciences
    Published by Copernicus on behalf of European Geosciences Union.
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 3
    Publication Date: 2007-08-09
    Description: Iron is an essential nutrient involved in a variety of biological processes in the ocean, including photosynthesis, respiration and nitrogen fixation. Atmospheric deposition of aerosols is recognized as the main source of iron for the surface ocean. In high nutrient, low chlorophyll areas, it is now clearly established that iron limits phytoplankton productivity but its biogeochemical role in low nutrient, low chlorophyll environments has been poorly studied. We investigated this question in the unexplored southeast Pacific, arguably the most oligotrophic area of the global ocean. Situated far from any continental aerosol source, the atmospheric iron flux to this province is amongst the lowest of the world ocean. Here we report that, despite low dissolved iron concentrations (~0.1 nmol l−1) measured across the whole gyre (3 stations situated in the center, the western and the eastern edge), photosynthesis and primary productivity are only limited by iron availability at the border of the gyre, but not in the center. The seasonal stability of the gyre has apparently allowed for the development of populations acclimated to these extreme oligotrophic conditions. Moreover, despite clear evidence of nitrogen limitation in the central gyre, we were unable to measure nitrogen fixation in our experiments, even after iron and/or phosphate additions, and cyanobacterial nifH gene abundances were extremely low compared to the North Pacific Gyre. The South Pacific gyre is therefore unique with respect to the physiological status of its phytoplankton populations.
    Print ISSN: 1810-6277
    Electronic ISSN: 1810-6285
    Topics: Biology , Geosciences
    Published by Copernicus on behalf of European Geosciences Union.
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...