ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
Filter
  • Blackwell Publishing Ltd  (56)
  • Wiley-Blackwell  (50)
  • 1
    ISSN: 1475-2743
    Source: Blackwell Publishing Journal Backfiles 1879-2005
    Topics: Geosciences , Agriculture, Forestry, Horticulture, Fishery, Domestic Science, Nutrition
    Notes: Abstract. Dynamic simulation models are increasingly used in environmental and agricultural science. Here we present a method that allows models to be used to determine optimum timing of sampling for field trials. The model is used to decide when to concentrate sampling effort before the field trial begins. The model chosen to design sampling strategy should include an appropriately sensitive description of all processes that influence measurements significantly. The simulation is run, using predicted weather data, to generate the full time series before the trial begins. Every point in the simulation is considered initially to be a potential sampling point. The potential error due to not including a measurement at each point is calculated using the ‘dot-to-dot’ method of b10Smith et al. (2002) by omitting simulated values consecutively. The calculated potential error provides a measure of the priority that should be given to sampling at each point. Where the error introduced by omitting the simulated value exceeds an acceptable error, the value at the last discernible time step should be measured so that all statistically significant changes in the system can be observed. The output from the calculation is a plan of sampling times needed to capture all statistically significant events that are likely to occur over the course of the trial.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 2
    Electronic Resource
    Electronic Resource
    Oxford, UK : Blackwell Publishing Ltd
    Soil use and management 16 (2000), S. 0 
    ISSN: 1475-2743
    Source: Blackwell Publishing Journal Backfiles 1879-2005
    Topics: Geosciences , Agriculture, Forestry, Horticulture, Fishery, Domestic Science, Nutrition
    Notes: Abstract. Under the Kyoto Protocol, the European Union is committed to an 8% reduction in CO2 emissions, compared to baseline (1990) levels, during the first commitment period (2008–2012). However, within the overall EU agreement, the UK is committed to a 12.5% reduction. In this paper, we estimate the carbon mitigation potential of various agricultural land-management strategies (Kyoto Article 3.4) and examine the consequences of UK and European policy options on the potential for carbon mitigation.We show that integrated agricultural land management strategies have considerable potential for carbon mitigation. Our figures suggest the following potentials (Tg yr−1) for each scenario: animal manure, 3.7; sewage sludge, 0.3; cereal straw incorporation, 1.9; no-till farming, 3.5; agricultural extensification, 3.3; natural woodland regeneration, 3.2 and bioenergy crop production, 4.1. A realistic land-use scenario combining a number of these individual management options has a mitigation potential of 10.4 Tg C yr−1 (equivalent to about 6.6% of 1990 UK CO2-carbon emissions). An important resource for carbon mitigation in agriculture is the surplus arable land, but in order to fully exploit it, policies governing the use of surplus arable land would need to be changed. Of all options examined, bioenergy crops show the greatest potential. Bioenergy crop production also shows an indefinite mitigation potential compared to other options where the potential is infinite.The UK will not attempt to meet its climate change commitments solely through changes in agricultural land-use, but since all sources of carbon mitigation will be important in meeting these commitments, agricultural options should be taken very seriously.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 3
    Electronic Resource
    Electronic Resource
    Oxford, UK : Blackwell Publishing Ltd
    Soil use and management 19 (2003), S. 0 
    ISSN: 1475-2743
    Source: Blackwell Publishing Journal Backfiles 1879-2005
    Topics: Geosciences , Agriculture, Forestry, Horticulture, Fishery, Domestic Science, Nutrition
    Notes: Abstract. Soils can be used as a biospheric sink for carbon under Article 3.4 of the Kyoto Protocol and parties are able to use agricultural soil carbon sinks to contribute towards carbon emission reduction targets. This should be done ‘taking into account uncertainties, transparency in reporting, and verifiability’. Models are often tested against data sets of long-term changes in soil organic carbon (SOC), but most data sets have only mean SOC values available at each sample date, with no estimates of error about the mean. We show that when using data sets that do not include estimates of error about the mean, it is not possible to reduce the error (root mean squared error) between modelled and measured values below 6.8–8.5%, even with site-specific model calibration. Equivalent errors for model runs using regional default input values are 12–34%. Using error as an indicator of the certainty that can be attached to model projections, we show that a significant reduction in uncertainty is needed for Kyoto accounting. Uncertainties for modelling during the first Kyoto Commitment Period could be reduced by better replication of soil measurements at benchmark sites. This would allow model error to be separated from measurement error, which would allow more comprehensive model testing and, ultimately, more certainty to be attached to model predictions.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 4
    Electronic Resource
    Electronic Resource
    Oxford, UK : Blackwell Publishing Ltd
    Soil use and management 13 (1997), S. 0 
    ISSN: 1475-2743
    Source: Blackwell Publishing Journal Backfiles 1879-2005
    Topics: Geosciences , Agriculture, Forestry, Horticulture, Fishery, Domestic Science, Nutrition
    Notes: Abstract. Agricultural soils, having been depleted of much of their native carbon stocks, have a significant CO2 sink capacity. Global estimates of this sink capacity are in the order of 20-30 Pg C over the next 50-100 years. Management practices to build up soil C must increase the input of organic matter to soil and/or decrease soil organic matter decomposition rates. The most appropriate management practices to increase soil C vary regionally, dependent on both environmental and socioeconomic factors.In temperate regions, key strategies involve increasing cropping frequency and reducing bare fallow, increasing the use of perennial forages (including N-fixing species) in crop rotations, retaining crop residues and reducing or eliminating tillage (i.e. no-till). In North America and Europe, conversion of marginal arable land to permanent perennial vegetation, to protect fragile soils and landscapes and/or reduce agricultural surpluses, provides additional opportunities for C sequestration.In the tropics, increasing C inputs to soil through improving the fertility and productivity of cropland and pastures is essential. In extensive systems with vegetated fallow periods (e.g. shifting cultivation), planted fallows and cover crops can increase C levels over the cropping cycle. Use of no-till, green manures and agroforestry are other beneficial practices. Overall, improving the productivity and sustainability of existing agricultural lands is crucial to help reduce the rate of new land clearing, from which large amounts of CO2 from biomass and soil are emitted to the atmosphere.Some regional analyses of soil C sequestration and sequestration potential have been performed, mainly for temperate industrialized countries. More are needed, especially for the tropics, to capture region-specific interactions between climate, soil and management resources that are lost in global level assessments.By itself, C sequestration in agricultural soils can make only modest contributions (e.g. 3-6% of total fossil C emissions) to mitigating greenhouse gas emissions. However, effective mitigation policies will not be based on any single ‘magic bullet’ solutions, but rather on many modest reductions which are economically efficient and which confer additional benefits to society. In this context, soil C sequestration is a significant mitigation option. Additional advantages of pursuing strategies to increase soil C are the added benefits of improved soil quality for improving agricultural productivity and sustainability.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 5
    ISSN: 1475-2743
    Source: Blackwell Publishing Journal Backfiles 1879-2005
    Topics: Geosciences , Agriculture, Forestry, Horticulture, Fishery, Domestic Science, Nutrition
    Notes: Abstract. Nitrogen (N) leaching losses from a shallow limestone soil growing a five course combinable croprotation (oilseed rape, wheat, peas, wheat, barley) were measured from 1990 until 1995 using porous ceramic cups, at 60 cm depth, and drainage estimates. The crops were grown with three husbandry systems and two levels of N fertilizer. The husbandry systems were designed to reflect local practice (Standard), the best possible techniques to reduce N loss (Protective) and an Intermediate system which was a compromise between the two. Nitrogen was applied at full and half recommended rates. Drainage started during September in four years and November in one year, with above average drainage in three years. Losses of N were largest after peas (58 kg/ha) and oilseed rape (42 kg/ha), and least (17 kg/ha) before peas sown in spring after a cover crop. Over five years, the Protective management system, which used early sowing and shallow cultivation wherever possible, lost least N (31 kg/ha/y) and the Standard system, with conventional drilling dates and ploughing as the primary cultivation, lost most (49 kg/ha/y). Halving the N fertilizer decreased N loss by 11 kg/ha/y, averaged over the rotation. None of the treatments gave mean drainage water nitrate concentrations of less than 50 mg/l, averaged over the five years. Changes to arable cropping alone will not eliminate the need for other measures to control nitrate concen-trations in public drinking water supplies.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 6
    Electronic Resource
    Electronic Resource
    Oxford, UK : Blackwell Publishing Ltd
    Soil use and management 20 (2004), S. 0 
    ISSN: 1475-2743
    Source: Blackwell Publishing Journal Backfiles 1879-2005
    Topics: Geosciences , Agriculture, Forestry, Horticulture, Fishery, Domestic Science, Nutrition
    Notes: Abstract. Soil carbon sequestration could meet at most about one-third of the current yearly increase in atmospheric CO2-carbon, but the duration of the effect would be limited, with significant impacts lasting only 20–50 years. Coupled with this limited duration, increases in population and per-capita energy demand mean that soil carbon sequestration could play only a minor role in closing the difference between predicted and target carbon emissions by 2100. However, if atmospheric CO2 concentrations are to be stabilized at reasonable levels (450–650 ppm), drastic reductions in carbon emissions will be required over the next 20–30 years. Given this, carbon sequestration should form a central role in any portfolio of measures to reduce atmospheric CO2 concentrations over this crucial period, while new energy technologies are developed and implemented. International agreements, such as the Kyoto Protocol, encourage soil carbon sequestration and could be used to formulate soil carbon sequestration polices. Such policies need to take account of other environmental impacts as well as political, economic and societal needs, so that they form part of a raft of measures encouraging sustainable development. Of the carbon sequestration options available, those of a ‘win–win’ nature, that is, those that increase carbon stocks at the same time as improving other aspects of the environment, and those that protect or enhance existing stocks (‘no regrets’ implementation) show the greatest promise in meeting these goals.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 7
    ISSN: 1475-2743
    Source: Blackwell Publishing Journal Backfiles 1879-2005
    Topics: Geosciences , Agriculture, Forestry, Horticulture, Fishery, Domestic Science, Nutrition
    Notes: Abstract. A number of changes in agricultural land-management show some potential as carbon mitigation options. However, research has focused on CO2-carbon mitigation and has largely ignored potential effects of land management change on trace gas fluxes. In this paper, we attempt for the first time, to assess the impact of these changes on fluxes of the important agricultural greenhouse gases, methane and nitrous oxide, in the UK.The estimates presented here are based on limited evidence and have a great (unquantifiable) uncertainty associated with them, but they show that the relative importance of trace gas fluxes varies enormously among the scenarlos. In some, such as the application of sewage sludge, woodland regeneration and bioenergy production scenarios, the inclusion of estimates for trace gas fluxes makes only a small (〈10%) difference to the CO2-C mitigation potential. In the animal manure and agricultural extensification scenarios, including estimates of trace gas fluxes has a large impact, increasing the CO2-C mitigation potential by up to 50%. In the no-till scenario, the carbon mitigation potential decreases significantly due to a sharp increase in N2O emissions under no-till.When these land-management options are combined for the whole agricultural land area of the UK, including trace gases has an impact on estimated mitigation potentials, and depending upon assumptions for the animal manure scenario, the total mitigation potential either decreases by about 10% or increases by about 30%, potentially shifting the mitigation potential of the scenario closer to the EU's 8% Kyoto target for reduction of CO2-carbon emissions (12.52 Tg C yr−1 for the UK).
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 8
    Electronic Resource
    Electronic Resource
    Oxford, UK : Blackwell Publishing Ltd
    Soil use and management 20 (2004), S. 0 
    ISSN: 1475-2743
    Source: Blackwell Publishing Journal Backfiles 1879-2005
    Topics: Geosciences , Agriculture, Forestry, Horticulture, Fishery, Domestic Science, Nutrition
    Notes: Abstract. Field margins are a valuable resource in the farmed landscape, providing numerous environmental benefits. We present a preliminary analysis of the carbon mitigation potential of different field margin management options for Great Britain, calculated using data from long-term experiments and literature estimates. The carbon sequestration potential of the individual options investigated here varies from 0.1 to 2.4% of 1990 UK CO2-C emissions, or 0.7–20% of the Quantified Emission Limitation Reduction Commitment (QELRC). The scenarios investigated covered three possible margin widths and options for the management of margins at each width (viz. grass strips, hedgerows and tree strips). Scenarios involving margin widths of 2, 6 or 20 m would require approximately 2.3, 6.7 or 21.3% of the total arable area of Great Britain, respectively. Scenarios including tree strips offered the greatest potential for carbon sequestration, since large amounts would be accumulated in above-ground biomass in addition to that in soil. We also accounted for the possible impacts of changed land management on trace gas fluxes, which indicated that any scenario involving a change from arable to grass strip, hedgerow or tree strip would significantly reduce N2O emissions, and thus further increase carbon mitigation potential. There would also be considerable potential for including the scenarios investigated here with other strategies for the alternative management of UK arable land to identify optimal combinations. We assumed that it would take 50–100 years for soil carbon to reach a new equilibrium following a land use change. More detailed analyses need to be conducted to include environmental benefits, socioeconomic factors and the full system carbon balance.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 9
    Electronic Resource
    Electronic Resource
    Oxford, UK : Blackwell Publishing Ltd
    Soil use and management 20 (2004), S. 0 
    ISSN: 1475-2743
    Source: Blackwell Publishing Journal Backfiles 1879-2005
    Topics: Geosciences , Agriculture, Forestry, Horticulture, Fishery, Domestic Science, Nutrition
    Notes: Abstract. The Marrakech Accords allow biospheric carbon sinks and sources to be included in attempts to meet emission reduction targets for the first commitment period of the Kyoto Protocol. Forest management, cropland management, grazing land management and re-vegetation are allowable activities under Article 3.4 of the Kyoto Protocol. Soil carbon sinks and sources can therefore be included under these activities. The Kyoto Protocol states that sinks and sources of carbon should be accounted for ‘taking into account uncertainties, transparency in reporting, verifiability’. At its most stringent, verifiability would entail the sampling of each geo-referenced piece of land subject to an Article 3.4 activity at the beginning and end of a commitment period, using a sampling regime that gives adequate statistical power. Soil and vegetation samples and records would be archived and the data from each piece of land aggregated to produce a national figure. Separate methods would be required to deliver a second set of independent verification data. Such an undertaking at the national level would be prohibitively expensive. At its least stringent, verifiability would entail the reporting of areas under a given practice (without geo-referencing) and the use of default values for a carbon stock change for each practice, to infer a change for all areas under that practice. A definition of verifiability between these extremes would allow simple methods, such as those derived from IPCC default values for CO2 fluxes from soil, to be used for estimating changes in soil carbon. These may enable low-level verifiability to be achieved by most parties by the beginning of the first commitment period (2008–2012).
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 10
    Electronic Resource
    Electronic Resource
    Oxford, UK : Blackwell Publishing Ltd
    Soil use and management 18 (2002), S. 0 
    ISSN: 1475-2743
    Source: Blackwell Publishing Journal Backfiles 1879-2005
    Topics: Geosciences , Agriculture, Forestry, Horticulture, Fishery, Domestic Science, Nutrition
    Notes: Abstract. Predictive, regional use of soil organic matter (SOM) models requires evaluation of the performance of models with datasets from long-term experiments relevant to the scenarios of interest to the regional scale study, and relevant to the climate of the study region. Datasets from six long-term experiments were used to evaluate the performance of RothC and CENTURY, two of the most widely used and tested SOM models. Three types of model run were completed for each site: (1) CENTURY model alone; (2) RothC model run to fit measured SOC values, by iteratively adjusting C inputs to soil; and (3) RothC model run using C inputs derived from CENTURY runs. In general, the performance of both models was good across all datasets. The runs using RothC (iteratively changing C inputs to fit measured SOC values) tended to have the best fit to model data, since this method involved direct fitting to observed data. Carbon inputs estimated by RothC were, in general, lower than those estimated by CENTURY, since SOC in CENTURY tends to turn over faster than SOC in RothC. The runs using RothC with CENTURY C inputs tended to have the poorest fit of all, since CENTURY predicted greater C inputs than were required by RothC to maintain the same SOC content. A plausible model fit to measured SOC data may be obtained with widely differing C input values, due to differences in predicted decomposition rates between models. It remains unclear which, if either, modelling approach most closely represents reality since both C inputs to soil and decomposition rates for bulk SOM are difficult to determine experimentally. Further progress in SOM modelling can only be the result of research leading to better process understanding, both of net C inputs to soil and of SOM decomposition rates.  The use of default methods for estimating initial SOC pools in RothC and CENTURY may not always be appropriate and may require adjustment for specific sites. The simulations presented here also suggest details of SOC dynamics not shown by available measured data, especially trends between sampling intervals, and this emphasizes the importance of archived soil samples in long-term experiments.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...