ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
Filter
  • Wiley  (54)
  • Springer  (8)
  • GeoForschungsZentrum  (3)
  • Blackwell Publishing Ltd  (2)
  • 1
    Electronic Resource
    Electronic Resource
    Oxford, UK : Blackwell Publishing Ltd
    Geophysical journal international 124 (1996), S. 0 
    ISSN: 1365-246X
    Source: Blackwell Publishing Journal Backfiles 1879-2005
    Topics: Geosciences
    Notes: Seismic refraction velocity data from the acoustic basement (called layer 2A) have been compiled for different mid-ocean ridges. The data from post-1970 studies show a strong correlation between velocity and basement age. Importantly, velocities double in less than 10 Myr for all ridges, but for older crust, up to 160 Myr in age, velocities do not increase significantly.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 2
    Electronic Resource
    Electronic Resource
    Oxford, UK : Blackwell Publishing Ltd
    Geophysical journal international 126 (1996), S. 0 
    ISSN: 1365-246X
    Source: Blackwell Publishing Journal Backfiles 1879-2005
    Topics: Geosciences
    Notes: Upper-mantle structure of Indian Ocean spreading ridges was investigated by track segments of Geosat/ERM altimeter measurements. To determine the upper-mantle structure of the Earth's gravity field, a low-degree and -order spherical harmonic representation of the geoid was removed. A test of several reference fields suggested that a degree 2–25 field with gradually rolled off coefficients (Sandwell & Renkin 1988) offers an adequate representation of the long-wavelength geoidal undulations.Filtered profiles of three individual ridge segments display a strong asymmetry in geoid versus age trends of conjugated rift flanks. The unusually low geoid slopes on one flank can perhaps best be explained as a dynamic or thermal phenomenon reflecting a flow connection between a neighbouring off-axis hotspot plume and the ridge axis, while the other flank simply cools as it spreads away from the axial zone. It seems reasonable to hypothesize that the Southwest Indian Ridge and the Southeast Indian Ridge act as sinks for plumes beneath Agulhas Plateau and Kerguelen Islands, respectively. The Carlsberg Ridge data suggest that the Réunion hotspot contaminated northwestern African lithosphere until 15 Ma. Moreover, symmetric flattening of geoid versus age trends of conjugated ridge flanks offers evidence that plume events affect geoid versus age trends
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 3
    Electronic Resource
    Electronic Resource
    Springer
    Marine geophysical researches 19 (1997), S. 1-23 
    ISSN: 1573-0581
    Keywords: Extinct spreading axis ; oceanic crust ; seismic refraction
    Source: Springer Online Journal Archives 1860-2000
    Topics: Geosciences , Physics
    Notes: Abstract Two seismic refraction and gravity lines were obtained along and normal to the axis of the Aegir Rift, an extinct spreading centre in the Norway Basin. Velocity-depth solutions and crustal structure models are derived from ocean-bottom records using two-dimensional ray tracing and synthetic seismogram modelling techniques. Gravity data are used to generate models consistent with the lateral variations in thickness of the layers in the crustal models. The resulting models require considerable degree of lateral inhomogeneity along and perpendicular to the rift axis. Crust within the extinct spreading centre is found to be thinner and of low P-wave velocity when compared with the crust sampled off-axis. To explain reduced velocities of the lower crust we suggest that, due to the relationship between fracturing and seismic velocity, the decreasing spreading rate leading up to extinction let the mechanically strong layer thicken, so that faulting and fracturing extended to greater depths . Low velocities are also observed in the uppermost mantle underlying the extinct spreading ridge. This zone is attributed to hydrothermal alteration of upper mantle peridotites. Furthermore, after spreading ceased 32-26 my ago, ongoing passive hydrothermal circulation was accompanied by the precipitation of alteration products in open void spaces, thereby decreasing the porosity and increasing the velocity. Consequently the typical low velocities of layer 2 found at active mid-ocean ridges have been replaced by values typical of mature oceanic crust.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 4
  • 5
    Publication Date: 2008-12-19
    Description: The construction of S-wave velocity models of marine sediments down to hundreds of meters below the seafloor is important in a number of disciplines. One of the most significant trends in marine geophysics is to use interface waves to estimate shallow shear velocities which play an important role in determining the shallow crustal structure. In marine settings, the waves trapped near the fluid-solid interface are called Scholte waves, and this is the subject of the study. In 1998, there were experiments on the Ninetyeast Ridge (Central Indian Ocean) to study the shallow seismic structure at the drilled site. The data were acquired by both ocean bottom seismometer and ocean bottom hydrophone. A new type of seafloor implosion sources has been used in this experiment, which successfully excited fast and high frequency (〉500 Hz) body waves and slow, intermediate frequency (〈20 Hz) Scholte waves. The fundamental and first higher mode Scholte waves have both been excited by the implosion source. Here, the Scholte waves are investigated with a full waveform modeling and a group velocity inversion approach. Shear wave velocities for the uppermost layers of the region are inferred and results from the different methods are compared. We find that the full waveform modeling is important to understand the intrinsic attenuation of the Scholte waves between 1 and 20 Hz. The modeling shows that the S-wave velocity varies from 195 to 350 m/s in the first 16 m of the uppermost layer. Depths levels of high S-wave impedance contrasts compare well to the layer depth derived from a P-wave analysis as well as from drilling data. As expected, the P- to S-wave velocity ratio is very high in the uppermost 16 m of the seafloor and the Poisson ratio is nearly 0.5. Depth levels of high S-wave impedance contrasts are comparable to the layer depth derived from drilling data. © The Author(s) 2008.
    Print ISSN: 1383-4649
    Electronic ISSN: 1573-157X
    Topics: Geosciences , Physics
    Published by Springer
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 6
  • 7
    facet.materialart.
    Unknown
    Springer
    In:  Marine Geophysical Researches, 20 (3). pp. 239-247.
    Publication Date: 2018-02-08
    Description: Bottom shots have been used for a number of years in seismic studies on the ocean floor. Most experiments utilized explosives as the energy source, though researchers have recognized the usefulness of collapsing water voids to produce seismoacoustic signals. Implosive sources, however, suffered generally from a lack of control of source depth. We present a new experimental tool, called SEEBOSEIS, to carry out seismic experiments on the seafloor utilizing hollow glass spheres as controlled implosive sources. The source is a 10-inch BENTHOS float with penetrator. Inside the sphere we place a small explosive charge (two detonators) to destabilize the glass wall. The time of detonation is controlled by an external shooting device. Test measurements on the Ninetyeast Ridge, Indian Ocean, show that the implosive sources can be used in seismic refraction experiments to image the subbottom P- wave velocity structure in detail beyond that possible with traditional marine seismic techniques. Additionally, the implosions permit the efficient generation of dispersed Scholte waves, revealing upper crustal S-wave velocities. The frequency band of seismic energy ranges from less than 1 Hz for Scholte modes up to 1000 Hz for diving P-waves. Therefore, broadband recording units with sampling rates 〉2000 Hz are recommended to sample the entire wave field radiated by implosive sources.
    Type: Article , PeerReviewed
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 8
    Publication Date: 2020-02-06
    Description: At the eastern end of the Azores-Gloria transform fault system to the southwest of Portugal, the plate boundary between Africa and Iberia is a region where deformation is accommodated over a wide tectonically-active area. The region has unleashed large earthquakes and tsunamis, including the Mw ~ 8.5 Great Lisbon earthquake of 1755. Although the source region of the 1755 earthquake is still disputed, most proposals include a source location in the vicinity of the Horseshoe Abyssal Plain (HAP), which is bounded by the 5000 m high Gorringe Bank (GB). In this study we characterise seismic activity in the region using data recorded by two local networks of ocean-bottom seismometers (OBS). The networks were deployed in the eastern HAP and at the GB. The dataset allowed the detection of 160 local earthquakes. These earthquakes cluster around the GB, to the SW of Cabo Sao Vicente, and in the HAP. Focal depths indicate deep-seated earthquakes, with depths increasing from 20-35 km (mean of 26.1 ± 7.2 km) at the GB to 15-45 km (mean 31.5 km ± 10.5 km) under the HAP. Seismic activity thus extends down to levels that are deeper than those mapped by active seismic profiling, with the majority of events occurring within the mantle. Thermal modelling suggests that temperatures of approximately 600 °C characterise the base of the seismogenic brittle lithosphere at ~45 km depth. The large source depth and thermal structure supports previous suggestions that catastrophic seismic rupture through the lithospheric mantle may indeed occur in the area.
    Type: Article , PeerReviewed
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 9
    facet.materialart.
    Unknown
    AGU (American Geophysical Union) | Wiley
    In:  Geochemistry, Geophysics, Geosystems, 18 (6). pp. 2149-2161.
    Publication Date: 2020-02-06
    Description: We report the results of a two-dimensional tomographic inversion of marine seismic refraction data from an array of ocean-bottom seismographs (OBSs), which produced an image of the crustal structure along the axial valley of the ultraslow spreading Mid-Cayman Spreading Center (MCSC). The seismic velocity model shows variations in the thickness and properties of the young oceanic crust that are consistent with the existence of two magmatic-tectonic segments along the 110 km long spreading center. Seismic wave speeds are consistent with exhumed mantle at the boundary between these two segments, but changes in the vertical gradient of seismic velocity suggest that volcanic crust occupies most of the axial valley seafloor along the seismic transect. The two spreading segments both have a low-velocity zone (LVZ) several kilometers beneath the seafloor, which may indicate the presence of shallow melt. However, the northern segment also has low seismic velocities (3 km/s) in a thick upper crustal layer (1.5–2.0 km), which we interpret as an extrusive volcanic section with high porosity and permeability. This segment hosts the Beebe vent field, the deepest known high-temperature black smoker hydrothermal vent system. In contrast, the southern spreading segment has seismic velocities as high as 4.0 km/s near the seafloor. We suggest that the porosity and permeability of the volcanic crust in the southern segment are much lower, thus limiting deep seawater penetration and hydrothermal recharge. This may explain why no hydrothermal vent system has been found in the southern half of the MCSC.
    Type: Article , PeerReviewed
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 10
    facet.materialart.
    Unknown
    AGU (American Geophysical Union) | Wiley
    In:  Geophysical Research Letters, 43 (4). pp. 1529-1536.
    Publication Date: 2020-11-04
    Description: Monowai is an active submarine volcanic center in the Kermadec Arc, Southwest Pacific Ocean. During May 2011, it erupted over a period of 5 days, with explosive activity directly linked to the generation of seismoacoustic T phases. We show, using cross-correlation and time-difference-of-arrival techniques, that the eruption is detected as far as Ascension Island, equatorial South Atlantic Ocean, where a bottom moored hydrophone array is operated as part of the International Monitoring System of the Comprehensive Nuclear-Test-Ban Treaty Organization. Hydroacoustic phases from the volcanic center must therefore have propagated through the Sound Fixing and Ranging channel in the South Pacific and South Atlantic Oceans, a source-receiver distance of ~15,800 km. We believe this to be the furthest documented range of a naturally occurring underwater signal above 1 Hz. Our findings, which are consistent with observations at regional broadband stations and long-range, acoustic parabolic equation modeling, have implications for submarine volcano monitoring.
    Type: Article , PeerReviewed
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...