ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
Filter
  • nitrogen  (179)
  • Springer  (176)
  • Biological and Chemical Oceanography Data Management Office (BCO-DMO). Contact: bco-dmo-data@whoi.edu  (3)
Collection
Publisher
  • 1
    ISSN: 1573-515X
    Keywords: continental shelf ; estuaries ; mass balance ; nitrogen ; North Atlantic ; nutrient budget ; phosphorus
    Source: Springer Online Journal Archives 1860-2000
    Topics: Chemistry and Pharmacology , Geosciences
    Notes: Abstract Five large rivers that discharge on the western North Atlantic continental shelf carry about 45% of the nitrogen (N) and 70% of the phosphorus (P) that others estimate to be the total flux of these elements from the entire North Atlantic watershed, including North, Central and South America, Europe, and Northwest Africa. We estimate that 61 · 109 moles y−1 of N and 20 · 109 moles y−1 of P from the large rivers are buried with sediments in their deltas, and that an equal amount of N and P from the large rivers is lost to the shelf through burial of river sediments that are deposited directly on the continental slope. The effective transport of active N and P from land to the shelf through the very large rivers is thus reduced to 292 · 109 moles y−1 of N and 13 · 109 moles y−1 of P. The remaining riverine fluxes from land must pass through estuaries. An analysis of annual total N and total P budgets for various estuaries around the North Atlantic revealed that the net fractional transport of these nutrients through estuaries to the continental shelf is inversely correlated with the log mean residence time of water in the system. This is consistent with numerous observations of nutrient retention and loss in temperate lakes. Denitrification is the major process responsible for removing N in most estuaries, and the fraction of total N input that is denitrified appears to be directly proportional to the log mean water residence time. In general, we estimate that estuarine processes retain and remove 30–65% of the total N and 10–55% of the total P that would otherwise pass into the coastal ocean. The resulting transport through estuaries to the shelf amounts to 172–335 · 109 moles y−1 of N and 11–19 · 109 moles y−1 of P. These values are similar to the effective contribution from the large rivers that discharge directly on the shelf. For the North Atlantic shelf as a whole, N fluxes from major rivers and estuaries exceed atmospheric deposition by a factor of 3.5–4.7, but this varies widely among regions of the shelf. For example, on the U.S. Atlantic shelf and on the northwest European shelf, atmospheric deposition of N may exceed estuarine exports. Denitrification in shelf sediments exceeds the combined N input from land and atmosphere by a factor of 1.4–2.2. This deficit must be met by a flux of N from the deeper ocean. Burial of organic matter fixed on the shelf removes only a small fraction of the total N and P input (2–12% of N from land and atmosphere; 1–17% of P), but it may be a significant loss for P in the North Sea and some other regions. The removal of N and P in fisheries landings is very small. The gross exchange of N and P between the shelf and the open ocean is much larger than inputs from land and, for the North Atlantic shelf as a whole, it may be much larger than the N and P removed through denitrification, burial, and fisheries. Overall, the North Atlantic continental shelf appears to remove some 700–950· 109 moles of N each year from the deep ocean and to transport somewhere between 18 and 30 · 109 moles of P to the open sea. If the N and P associated with riverine sediments deposited on the continental slope are included in the total balance, the net flux of N to the shelf is reduced by 60 · 109 moles y−1 and the P flux to the ocean is increased by 20 · 109 moles y−1. These conclusions are quite tentative, however, because of large uncertainties in our estimates of some important terms in the shelf mass balance.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 2
    ISSN: 1573-515X
    Keywords: aluminium ; forest soils ; lysimeters ; nitrification ; nitrogen ; roots
    Source: Springer Online Journal Archives 1860-2000
    Topics: Chemistry and Pharmacology , Geosciences
    Notes: Abstract The effects of enhanced (NH4 2SO4deposition on soil solution cation and anion concentrations and annualionic fluxes were followed using a standardised experimental protocolin six European coniferous forests with contrasting soil types, pollutioninputs and climate. Native soil cores containing a ceramic suction cupwere installed in the field, roofed and watered every two weeks withlocal throughfall or local throughfall with added(NH4)2SO4 at 75 kgNH4 +-N ha-1 a-1. Livingroot systems were established in half of the lysimeters.Untreated throughfall NH4 +-N deposition at thesites ranged from 3.7 to 29 kg ha-1 a-1Soil leachates were collected at two weekly intervalsover 12 months and analysed for volume, andconcentrations of major anions and cations. Increasesin soil solution NO3 - concentrations inresponse to N additions were observed after 4–9months at three sites, whilst one sandy soil with highC:N ratio failed to nitrify under any of thetreatments. Changes in NO3 - concentrationsin soil solution controlled soil solution cationconcentrations in the five nitrifying soils, withAl3+ being the dominant cation in the more acidsoils with low base saturation. The acidification responses ofthe soils to the (NH4 2SO4additions were primarily related to the ability of thesoils to nitrify the added NH4 +. pH and soiltexture seemed important in controllingNH4 + leaching in response to the treatments,with two less acidic, clay/clay loam sites showingalmost total retention of added NH4 +, whilstnearly 75% of the added N was leached asNH4 + at the acid sandy soils. The presenceof living roots significantly reduced soil solutionNO3 - and associated cation concentrations attwo of the six sites. The very different responses of the sixsoils to increased (NH4)2SO4deposition emphasise that the establishment of N critical loadsfor forest soils need to allow for differences in N storagecapacity and nitrification potential.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 3
    ISSN: 1573-2932
    Keywords: acidification ; emission ; MAGIC ; model ; nitrogen ; SAFE ; SMART ; sulfur
    Source: Springer Online Journal Archives 1860-2000
    Topics: Energy, Environment Protection, Nuclear Power Engineering
    Notes: Abstract Three well-known dynamic acidification models (MAGIC, SAFE, SMART) were applied to data sets from five Integrated Monitoring sites in Europe. The calibrated models were used in a policy-oriented framework to predict the long-term soil acidification of these background forest sites, given different scenarios of future deposition of S and N. Emphasis was put on deriving realistic site-specific scenarios for the model applications. The deposition was calculated with EMEP transfer matrices and official emissions for the target years 2000, 2005 and 2010. The alternatives for S deposition were current reduction plans and maximum feasible reductions. For N, the NOx and NHy depositions were frozen at the present level. For NOx, a reduction scenario of flat 30% reduction from present deposition also was utilized to demonstrate the possible effects of such a measure. The three models yielded generally consistent results. The ‘Best prediction’-scenario (including the effects of the second UN/ECE protocol for reductions of SO2 emissions and present level for NOx-emissions), resulted in many cases in a stabilization of soil acidification, although significant improvements were not always shown. With the exception of one site, the ‘Maximum Feasible Reductions’ scenario always resulted in significant improvements. Dynamic models are needed as a complement to steady-state techniques for estimating critical loads and assessing emission reduction policies, where adequate data are available.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 4
    ISSN: 1573-515X
    Keywords: estuaries ; lakes ; marine ; nitrogen ; phosphorus ; rivers ; streams ; temperate ; tropics
    Source: Springer Online Journal Archives 1860-2000
    Topics: Chemistry and Pharmacology , Geosciences
    Notes: Abstract Published data and analyses from temperate and tropical aquatic systems are used to summarize knowledge about the potential impact of land-use alteration on the nitrogen biogeochemistry of tropical aquatic ecosystems, identify important patterns and recommend key needs for research. The tropical N-cycle is traced from pre-disturbance conditions through the phases of disturbance, highlighting major differences between tropical and temperate systems that might influence development strategies in the tropics. Analyses suggest that tropical freshwaters are more frequently N-limited than temperate zones, while tropical marine systems may show more frequent P limitation. These analyses indicate that disturbances to pristine tropical lands will lead to greatly increased primary production in freshwaters and large changes in tropical freshwater communities. Increased freshwater nutrient flux will also lead to an expansion of the high production, N- and light-limited zones around river deltas, a switch from P- to N-limitation in calcareous marine systems, with large changes in the community composition of fragile mangrove and reef systems. Key information gaps are highlighted, including data on mechanisms of nutrient transport and atmospheric deposition in the tropics, nutrient and material retention capacities of tropical impoundments, and N/P coupling and stoichiometric impacts of nutrient supplies on tropical aquatic communities. The current base of biogeochemical data suggests that alterations in the N-cycle will have greater impacts on tropical aquatic ecosystems than those already observed in the temperate zone.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 5
    Electronic Resource
    Electronic Resource
    Springer
    Entomologia experimentalis et applicata 86 (1998), S. 175-182 
    ISSN: 1570-7458
    Keywords: Aleyrodidae ; greenhouse whitefly ; nitrogen ; host selection ; oviposition
    Source: Springer Online Journal Archives 1860-2000
    Topics: Biology
    Notes: Abstract Tomato plants, Lycopersicon esculentum Miller cv 'Tres Cantos', were supplied with high (308 ppm), medium (140 ppm) and low (84 ppm) nitrogen doses in order to determine the influence of nitrogen fertilization on feeding and oviposition site selection by greenhouse whitefly adults, T. vaporariorum (Westwood). The nitrogen and water content was higher in plants supplied with 308 N ppm than in plants with medium or low nitrogen doses and no differences were found in soluble sugar content. The leaves of the upper plant stratum (leaves 1–5) had the greatest nitrogen and water content, independent of the nitrogen dose applied. The plants were exposed to T. vaporariorum adults into a greenhouse under two current (late autumn-winter and spring-early summer) situations of the tomato crop in the Mediterranean area. The distribution of whitefly adults on the plants was affected by the nitrogen dose in both experimental conditions, the number of adults was higher on the plants supplied with high nitrogen dose. Within plants, adult distribution was affected by leaf position, the upper plant stratum being preferred for feeding. Whitefly females selected for oviposition and laid more eggs on plants and leaves of plants with higher nitrogen and water contents. We conclude that whitefly host selection for feeding and ovipositing are related to differences in nitrogen and water content of the host plant.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 6
    ISSN: 1570-7458
    Keywords: Alsophila pometaria ; Geometridae ; Anisota senatoria ; Citheroniidae ; Quercus ; nutritional ecology ; herbivory ; nutritional indices ; consumption ; growth ; utilization efficiency ; nitrogen ; water ; tannins ; phenols ; gut pH ; digestive enzymes
    Source: Springer Online Journal Archives 1860-2000
    Topics: Biology
    Description / Table of Contents: Résumé Alimentées sur feuillage jeune de chêne, les chenilles d'Alsophila pometaria avaient un taux relatif de croissance (RGR) et un taux relatif d'accumulation d'azote (RNAR) plus élevés que les chenilles d'Anisota senatoria alimentées sur feuillage mûr de chêne. Bien que le jeune feuillage soit plus efficacement digéré par A. pometaria (AD plus élevé), il n'est pas assimilé et utilisé pour la croissance avec de meilleurs rendements (les ECI ne sont pas différents). Ainsi le taux de croissance plus élevé d'A. pometaria est dû entièrement à un taux de consommation plus important (RCR et RNCR). Le feuillage jeune est significativement plus riche en azote et en eau que le feuillage mûr, mais les niveaux de phénol et de tanins sont les mêmes. A pometaria consomme les feuilles de différentes espèces de chênes au même taux, indépendamment de la teneur en azote, tandis que A. senatoria accroît sa consommation en réponse à une diminution de la teneur en azote. Il en résulte que le taux de croissance d'A. pometaria dépend directement de la teneur en azote des feuilles, tandis que celui d'A. senatoria en est indépendant. Les systèmes digestifs des deux insectes sont biochimiquement semblables et sont efficaces pour la digestion des protéines. Les tanins et les phénols n'influent pas sur les indices nutritionnels de ces deux espèces. Nous estimons que le principal intérêt de l'alimentation printanière est la disponibilité en feuillage succulent, riche en azote, et non l'absence de feuilles à haute teneur en tanin. L'alimentation printanière semble correspondre à une strategie alimentaire qui favorise la croissance aux dépens de l'efficacité tandis que l'alimentation en fin d'été est une stratégie qui favorise l'efficacité sur la rapidité.
    Notes: Abstract The larvae of Alsophila pometaria (Harr.), feeding on the young foliage of oak, has a higher relative growth rate (RGR) and relative nitrogen accumulation rate (RNAR) than the larvae of Anisota senatoria (J. E. Smith), feeding on the mature foliage of oak. Although the young oak foliage is more efficiently digested by A. pometaria (higher AD's), it is not more efficiently assimilated and used for growth (no difference in ECI's). Thus, the higher growth rate of A. pometaria is due entirely to a higher consumption rate (RCR and RNCR). Young foliage is significantly higher in nitrogen and water than mature foliage, but phenol and tannin levels are comparable in young and old foliage. A. pometaria consumes the foliage of different oak species at the same rate, independent of nitrogen content, while A. senatoria increases its consumption rate in response to decreased nitrogen levels. As a result, the growth rate of A. pometaria is directly related to leaf nitrogen content, while the growth rate of A. senatoria is independent of leaf nitrogen. The two species of insects have digestive systems that are very similar biochemically, and that are well-designed for effective protein digestion. Tannins and phenols do not influence the nutrional indices of either species. We suggest that the major benefit of spring feeding is the availability of succulent, high-nitrogen foliage, and not the avoidance of high-tannin foliage. The spring feeder appears to have a feeding strategy that favors rapid growth at the expense of efficiency, while the late summer feeder has a strategy that favors efficiency over rate.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 7
    ISSN: 1432-0789
    Keywords: Key words Microbial biomass C ; Water-soluble organic carbon ; Light fraction organic carbon ; Fertilizer ; nitrogen ; 13C nuclear magnetic resonance ; Infrared spectrophotometry
    Source: Springer Online Journal Archives 1860-2000
    Topics: Biology , Geosciences , Agriculture, Forestry, Horticulture, Fishery, Domestic Science, Nutrition
    Notes: Abstract Soil samples taken from four experimental sites that had been cropped to continuous corn for 3–11 years in Ontario and Quebec were analyzed to evaluate changes in quantity and quality of labile soil organic carbon under different nitrogen (N) fertility and tillage treatments. Addition of fertilizer N above soil test recommendations tended to decrease amounts of water-soluble organic carbon (WSOC) and microbial biomass carbon (MBC). The quality of the WSOC was characterized by 13C nuclear magnetic resonance and infrared spectrophotometry and the results indicated that carbohydrates, long-chain aliphatics and proteins were the major components of all extracts. Similar types of C were present in all of the soils, but an influence of management was evident. The quantity of soil MBC was positively related to the quantities of WSOC, carbohydrate C, and organic C, and negatively related to quantities of long-chain aliphatic C in the soil. The quantity of WSOC was positively related to the quantities of protein C, carbohydrate C, and negatively related to the quantity of carboxylic C. The quantity of soil MBC was not only related to quantities of soil WSOC but also to the quality of soil WSOC.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 8
    ISSN: 1573-0867
    Keywords: Phosphorus ; nitrogen ; iron ; VAM ; Rhizobium ; faba-bean
    Source: Springer Online Journal Archives 1860-2000
    Topics: Agriculture, Forestry, Horticulture, Fishery, Domestic Science, Nutrition
    Notes: Abstract The effect of rhizobial inoculation, vesicular arbuscular mycorrhizal (VAM) fungi on the growth, P, N and Fe uptake by faba-bean plants (Vicia faba L.V. Giza 2) grown in virgin sandy soil, treated with super or rock-P were studied under green-house conditions. The earthern pots received a half of the recommended rate of P either as single super phosphate or rock-P in the rate of 20 mg P/kg soil, and calcium ammonium nitrate was added in the rate of 10 mg N/kg soil. Iron was applied in two levels 0 and 5 mg Fe/kg soil, in the form of iron sulphate (FeSO4·7H2O). Dry matter yield, as well as P, N and Fe-uptake were determined. Nodule numbers and their dry weights, spore numbers and mycorrhizal root infection were determined. Results indicated that, fungal infection and rhizobial inoculation either alone or in combination increased dry matter yield as compared to uninoculated plants, whereas the percentages increase in dry matter were 34, 26 and 57% in case of super-P application, while they were 56, 47 and 89% in case of rock-P when inoculated withRhizobium, VAM and dual inoculation respectively. Also P, N and Fe uptake were significantly increased due to inoculation, and dual inoculation resulted the highest effect. Generally, inoculation withRhizobium and/or mycorrhizae can remove the deficient effect of P and Fe on N2-fixation and plant growth in the soil of low nutrients content.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 9
    Electronic Resource
    Electronic Resource
    Springer
    Journal of thermal analysis and calorimetry 53 (1998), S. 111-121 
    ISSN: 1572-8943
    Keywords: air ; cobalt dopant ; iron dopant ; n-butane ; nitrogen ; thermogravimetric analysis ; vanadium phosphorus oxides
    Source: Springer Online Journal Archives 1860-2000
    Topics: Chemistry and Pharmacology
    Notes: Abstract The transformation of VOHPO4·0.5H2O (VPO) precursor doped with cobalt or iron for n-butane oxidation to maleic anhydride was investigated by thermogravimetric analysis under air and nitrogen, with and without n-butane in the flow. While almost no effect was observed in nitrogen or air, a strong influence of the doping was observed when n-butane was added to the nitrogen or air. This resulted in a delay of the decomposition of the precursor and a further reoxidation of the VPO catalyst, particularly for doping with cobalt at low percentage (1%). This shows that doping can change the oxidation state of vanadium phosphorus oxide catalysts, which can explain differences in their catalytic performances and the favourable effect of doping by cobalt.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 10
    ISSN: 1572-9834
    Keywords: Alnus glutinosa ; constructed ecosystems ; disinfection ; Iris pseudacorus ; multi-stage systems ; nitrogen ; phosphorus ; constructed treatment wetlands ; optimization ; purification efficiencies ; urban wastewaters treatment ; Typha latifolia
    Source: Springer Online Journal Archives 1860-2000
    Topics: Biology
    Notes: Abstract Tests were carried out under controlled conditions in the Experimental Plant of Viville (Arlon, Belgium) to enhance the purification of urban wastewater by “natural” means. The results demonstrate the need to structure treatment systems in a series of different artificial ecosystems (or a Hierarchical Mosaic of Artificial Ecosystems — MHEA in French). The first two levels we used were made up of an unplanted aquatic ecosystem (stabilization pond) followed by a semi-aquatic ecosystem planted withTypha latifolia L. in which the water flows over the substrate. At a flow rate of 4 m2/PE (1 PE=150 1/day of typical urban wastewaters in Belgian rural zones), this first stage substantially reduces suspended solids (SS), COD and BOD5, a significant amount of tot-N and tot-P, and reduces pathogens by 100-fold. Further, the system is easy to manage (sludge is eliminated in the first stage and biomass is collected in the second stage) and the treatment system does not clog up. Nevertheless, real and sustainable environmental protection demands even higher performance rates, and these first two stages, both in terms of design and dimension, can only be considered as a satisfactory part of a MHEA system. Artificial aquatic, semi-aquatic, and terrestrial ecosystems were systematically compared at the third and fourth stage of the system to increase the overall removal efficiency. The most complete and efficient system in our tests (i.e., the one that provides the most successful primary (SS), secondary (COD and BOD5) and tertiary (N and P) treatment and the best pathogens removal rates) was made up of 3 sequential series of ecosystems: an aquatic ecosystem whose flow went into a plantedTypha latifolia system (surface water flow), that flowed into a terrestrial ecosystem planted withAlnus glutinosa (L.) Gaertn (vertical subsurface water flow). A total surface area (stages 1–4) of 8 m2/PE ensured a high performance level whose outflow conformed to the strictest European norms.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...