ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
Filter
  • BioMed Central  (1)
Collection
Years
  • 1
    Publication Date: 2013-11-22
    Description: Background As the largest low-latitude permafrost region, the Tibetan Plateau (TP) is an important part of the earth’s terrestrial ecosystem and one of the most vulnerable areas to climate change and human activities. However, to the best of our knowledge, the bacterial communities in TP soils and their roles in biogeochemical cycles remain limited. Results In this study, we report the bacterial community structure and function as well as their correlation with environmental factors in TP major ecosystems (farmland, alpine meadow and oligosaline lake) by using metagenomic approaches. Compared with other soil samples in various environments, TP soils share a core set of microorganisms with a distinct abundance and composition. Among TP soil samples, the taxonomic and functional composition of bacterial communities among the upper (3-5 cm) and lower (18-20 cm) soils of farmland sites were highly similar, whereas the dissimilarities within alpine meadow samples were significantly greater than among farmland samples. A similar pattern was observed in elements cycles and pathways associated with adaption to environment and land use types. Canonical correlation analysis revealed that the bacterial communities in most of farmland and alpine meadow soil samples were also significantly correlated with geogenic variables. Specifically, the root-nodule bacteria are negatively correlated with the soil moisture and pH, while Thiobacillus associated with sulfur cycles show potential responses to low temperature and intense UV radiation. Conclusions These findings indicate that the bacterial community structure and functions in TP soils were influenced by both human activities and soil environmental properties, and that the bacterial communities appeared to be more homogenized in the farmland soils compared with pristine alpine meadows.
    Electronic ISSN: 1471-2164
    Topics: Biology
    Published by BioMed Central
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...