ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    Publication Date: 2015-12-03
    Description: Activating mutations of Rho-family of small GTPases have been linked to lymphoproliferative disorders, although the pathogenesis mechanism involved is unknown. BCR-ABL (p190) B-cell acute lymphoblastic leukemia (B-ALL) arises from the expression of the oncofusion protein BCR-ABL in a B-cell progenitor. The transforming effect of BCR-ABL is dependent on the tyrosine kinase (TK) activity of the fusion protein that leads to autophosphorylation, recruitment of adaptor proteins, and subsequent activation of downstream signaling. TK inhibitors (TKIs) have been used as frontline treatment for Ph+ B-ALL patients. However, relapse is common in Ph+ B-ALL despite high rates of complete response with initial therapy, probably because of survival of leukemic progenitors. These BCR-ABL+ progenitors appear to develop additional epigenetic and genetic alterations that result in proliferative advantage frequently associated with silencing of the cyclin dependent kinase inhibitor Cdkn2a, even before mutant Cdkn2a gene deleted cells are selected during clonal evolution. Recent work by our group (Chang KH et al., Blood 2012) identified the Rho GTPase guanine nucleotide exchange factor Vav3 in BCR-ABL mediated lymphoid leukemogenesis. We showed that the deficiency of the guanosine nucleotide exchange factor Vav3 delays leukemogenesis and phenocopies the effect of Rac2 (and combined Rac2/Rac1) deficiency (Thomas EK et al., Cancer Cell 2007; Sengupta A et al., Blood 2010), a downstream effector of Vav3. Upregulated Vav3 expression and activation only partly depend on ABL TK activity, and Vav3 deficiency collaborates with tyrosine kinase inhibitors to impair leukemogenesis in vitro and in vivo through impaired proliferation and survival. On the other hand, our group has demonstrated that Bmi1 overexpression frequently found in BCR-ABL+ B-ALL results in B-cell progenitor reprogramming through acquisition of a stem cell-like phenotype (Sengupta A et al., Blood 2012). Bmi1 forms part of the classical polycomb repression complex 1 (PRC1) where its component Ring1A/B catalyzes histone H2A mono-ubiquitination at lysine 119, which in conjunction with the PRC2 complex activity leads to chromatin compaction and repression of target genes. Through epistasis experiments, we found that Vav3 or Rac2 deficiency abrogates the oncogenic effect of Bmi1 overexpression. Co-immunoprecipitation experiments in nuclear and cytoplasmic cell extracts demonstrated that Vav3 and Rac1/Rac2 co-immunoprecipitate with Bmi1 in the nucleus but not in the cytosol of BCR-ABL+ leukemic cells. Interestingly, control non-BCR-ABL expressing nuclear extracts show minimal, if any, level of co-immunoprecipitation. This co-immunoprecipitation is not directly induced by BCR-ABL since BCR-ABL does not co-immunoprecipitate with Vav3/Rac1/Rac2 but does with Bmi1, suggesting that nuclear Vav3 activity may be dissected from the TK activity of BCR-ABL. Biochemically, the overexpression of Bmi1 results in increased activation of nuclear Rac which is practically abrogated by the deficiency of Vav3 as assessed in cellular pulldown assays of primary leukemic B-cell progenitors. As expected, downstream expression of Cdkn2a is repressed by overexpression by Bmi1. Deficiency of Vav3 restores the expression of Cdkn2a to control levels. This data suggests a transcriptional regulatory role of the signaling proteins Vav3/Rac2 in the nucleus. Chromatin immunoprecipitation (ChIP)-qPCR for Bmi1, Ring1B and polycomb repressive histone marks (H2AK119 and H3K27me3) and the assay for Tn5-transposase accessible chromatin (ATAQ)-qPCR for the Cdkn2a locus in Vav3- or Rac2-deficient, BCR-ABL+ primary B-cell progenitors were compared with their BCR-ABL, Vav3/Rac2 expressing counterparts. These assays confirmed that Vav3 and Rac2 are essential for PRC dependent transcriptional repression of Cdkn2a through occupancy of the Cdkn2a promoter and decreased accessibility to Cdkn2a chromatin. In conclusion, our studies establish for the first time an association between nuclear Vav3/Rac and polycomb repressive activities in p190-BCR-ABL+ leukemogenesis through their activity on the Cdkn2a locus. Vav3 may represent a novel target for adjuvant therapy with TKI in BCR-ABL+ lymphoblastic leukemia. Disclosures No relevant conflicts of interest to declare.
    Print ISSN: 0006-4971
    Electronic ISSN: 1528-0020
    Topics: Biology , Medicine
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 2
    Publication Date: 2008-08-01
    Description: Venous thromboembolism (VTE) is increasingly diagnosed among individuals with hematologic malignancies. However, the risk of VTE among patients undergoing hematopoietic stem cell transplantation (HSCT) is unclear. We examined the incidence and risk factors for VTE and bleeding among 1514 patients undergoing in-patient HSCT. No protocolized VTE prophylaxis was used. By HSCT day 180, 75 symptomatic VTE occurred in 70 patients (4.6%; 95% confidence interval [CI], 3.6%-5.8%). Fifty-five (3.6%) were catheter-associated, 11 (0.7%) were non–catheter-associated deep venous thromboses, and 9 (0.6%) were pulmonary emboli. Thirty-four percent of VTE occurred at a platelet count less than 50 ×109/L; 13% occurred at a platelet count less than 20 ×109/L. In multivariate analysis, VTE was associated with prior VTE (odds ratio [OR], 2.9; 95% CI, 1.3-6.6) and with graft-versus-host disease (GVHD; OR, 2.4; 95% CI, 1.4-4.0). Clinically significant bleeding occurred in 230 patients (15.2%; 95% CI, 13.4%-17.1%); 55 patients (3.6%; 95% CI, 2.7%-4.7%) had fatal bleeding. Bleeding was associated with anticoagulation (OR, 3.1; 95% CI, 1.8-5.5), GVHD (OR, 2.4; 95% CI, 1.8-3.3), and veno-occlusive disease (OR, 2.2; 95% CI, 1.4-3.6). In HSCT patients, VTE is primarily catheter-related and 3-fold less common than clinically significant bleeding. These findings warrant consideration when selecting VTE prophylaxis in HSCT patients.
    Print ISSN: 0006-4971
    Electronic ISSN: 1528-0020
    Topics: Biology , Medicine
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 3
    Publication Date: 2019-11-13
    Description: Introduction Our group has pioneered a personalized vaccine in which patient-derived acute myeloid leukemia (AML) cells are fused with autologous dendritic cells (DC/AML fusion), presenting a broad array of leukemia associated antigens with DC mediated costimulation. In a clinical trial of AML patients who were vaccinated after chemotherapy-induced remission, 71% remained free of disease at median follow up of 57 months. We sought to identify factors associated with durable remission after vaccination using genomic analysis of the bone marrow microenvironment including single cell RNA-seq and TCR clonal diversity analysis. Methods Banked bone marrow samples both prior to and 1 month post-vaccination were selected from patients who maintained long disease remission for greater than 5 years and those who had early relapse. FFPE marrow core biopsy samples (N=10) were the source for gene expression analysis. NEBNext ultra II directional library prep kit and Illumina NextSeq 500/550 system were used to generate reliable high quality RNA sequencing data. Differentially expressed genes were identified by p-value (≤0.01) and fold change (≥2) using Linear Models for Microarray (Limma) approach. Ingenuity Pathways IPA 9.0 was then used to define pathways and upstream regulators. Flash frozen samples (N=4) were analyzed by RNAseq at the single cell level using a standard 10X genomics approach with cell cluster annotation performed with Single Cell Wizard software. Banked peripheral blood was used to evaluate TCR diversity with Takara SMART-Seq next-generation sequencing to amplify variable regions of TCR- α/β subunits. Results Heatmaps depict significant differential gene expression in bone marrow biopsies both pre- and post-vaccination in patients who remained in long-term remission (responders) compared to those who relapsed (non-responders). Prior to vaccination there was modest upregulation of immune activation pathways including IL-7, IL-17A as well as inhibition of TGF-b in responders, suggesting a role of the micro-environment in modulating response. Significantly upregulated pathways in responders after vaccination (p value
    Print ISSN: 0006-4971
    Electronic ISSN: 1528-0020
    Topics: Biology , Medicine
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 4
    Publication Date: 2014-12-06
    Description: A current limitation in gene therapy is obtaining a sufficient number of modified cells to produce a therapeutic effect in vivo. In several diseases, correction of a mutant allele confers a selective growth advantage to the modified cells, thus enhancing efficacy with moderate initial modification. For most diseases, however, there is no selective advantage to the corrected cells. One potential strategy to address this limitation is in vivo selection of modified cells using pharmacological agents. It has previously been shown that 6-thioguanine (6-TG), an FDA-approved chemotherapeutic small molecule, is cytotoxic to cells expressing the enzyme HPRT, allowing for selective growth of HPRT knockout cells. Knockout of HPRT can be achieved by creating a nonsense mutation in an upstream exon, or by terminating splicing by introducing a large transgene into an intron. To allow for selectable transgenesis of only cells which have undergone targeted integration (TI), engineered zinc-finger nucleases (ZFNs) were used to insert a virally-delivered transgene into an HPRT intron. After two weeks of in vitro 6-TG selection following genome modification, a 95-fold increase in TI was observed in pooled K562 cell populations to a final level of 72% TI, whereas a 30-fold increase in transgene-expressing live cells was seen in peripheral blood-mobilized primary CD34+ cells resulting in 90% transgene-positive live cells. Furthermore, a 72-fold increase in transgene mRNA transcript was observed after two weeks of erythroid differentiation and 6-TG selection of CD34+ cells compared to unselected genome-modified controls. These results represent an important step in developing hematopoietic stem cell (HSC)-based gene therapies, as well as a platform technology for creating gene-modified HSC populations with high proportions of therapeutic transgene expression via precise, targeted integration of a transgene of interest. Disclosures Conway: Sangamo Biosciences: Employment. Paschon:Sangamo Biosciences: Employment. Gregory:Sangamo Biosciences: Employment. Holmes:Sangamo Biosciences: Employment. Cost:Sangamo Biosciences: Employment.
    Print ISSN: 0006-4971
    Electronic ISSN: 1528-0020
    Topics: Biology , Medicine
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 5
    Publication Date: 2014-12-06
    Description: CD123 (IL-3 receptor alpha) is highly expressed on acute myeloid leukemia stem cells and blasts, and represents a promising target of antibody therapies for AML. Anti-CD123 antibodies such as CSL-362 and KHK2823 are currently in clinical development; however, a limitation of these molecules is that they are unable to stimulate T cell-mediated killing of CD123+ AML cells. To exploit the potent activity inherent to T cell immunotherapy while maintaining the favorable dosing regimen of a therapeutic antibody, we have designed a novel bispecific antibody that recruits T cells to attack CD123+ AML stem and blast cells. Such antibodies act via a mechanism known as "redirected T cell-cytotoxicity" (RTCC), because they stimulate targeted T cell-mediated killing regardless of T cell antigen specificity. Unlike other bispecific formats, these antibodies possess a full Fc domain and spontaneously form stable heterodimers that are readily manufactured. Their Fc domain was also engineered to abolish binding to Fcγ receptors (to reduce the potential for nonselective T cell activation), yet preserve binding to human FcRn (to maintain long serum half-life). We first generated a library of humanized and affinity-optimized anti-CD123 × anti-CD3 bispecific antibodies and assessed their potency using RTCC assays, in which bispecifics stimulated killing by human T cells of the CD123+ AML cell lines KG-1a and TF-1. From this cell-based screen, we selected the bispecific antibody XmAb14045 for testing in animal models. This antibody has 0.1 nM affinity for human CD123, and a T cell-engaging domain with 8 nM affinity for human CD3. XmAb14045 stimulated T cell-mediated killing of KG-1a and TF-1 cells with an EC50 〈 1 ng/ml (8 pM). In contrast, XmAb14045 had no cytotoxic activity against the CD123− Raji B cell line, demonstrating target specificity of the T cells. XmAb14045 had a prolonged serum half-life in mice of 6.2 days, in marked contrast to non-Fc domain-containing bispecific formats. Because this antibody was optimized for human CD123 and CD3 targets and does not crossreact with mouse antigens, we evaluated efficacy in cynomolgus monkeys. We treated 3 monkeys per group with a single dose of XmAb14045 at 0.01, 0.1, or 1 mg/kg. We quantified CD123+ cell numbers, including basophils and plasmacytoid dendritic cells (pDC) as CD123+ surrogate populations for AML stem and blast cells. Within 4 hours of dosing, XmAb14045 strongly activated T cells and stimulated depletion of over 99% of circulating CD123+ cells within 1 hr, particularly at the 0.1 and 1 mg/kg doses. Basophil and pDC counts fell to baseline within 4 hr and remained low for several weeks. Circulating CD4+ and CD8+ T cells were activated immediately after dosing and this was sustained for 48 hr, as measured by markedly increased levels of the activation markers CD25 and CD69. Notably, XmAb14045 induced rapid margination of CD4+ and CD8+ T cells from the circulation, with blood T cell populations returning to baseline within several days. Bone marrow CD123+ cells were depleted by over 95% at all doses, and these cell populations had not recovered by 8 days after treatment. Our results demonstrate that bispecific antibodies can recruit and activate T cells to efficiently kill CD123+ cells not only in the circulation but also in the bone marrow. Results in monkeys also suggest that changes in basophil and/or plasmacytoid dendritic cell numbers are readily quantifiable in peripheral blood, and thus these populations may serve as biomarkers for clinical efficacy. Our preclinical data provide a rationale for clinical assessment of anti-CD123 × anti-CD3 bispecific antibodies in patients with acute myeloid leukemia. Disclosures Chu: Xencor: Employment, Equity Ownership. Pong:Xencor, Inc.: Employment, Equity Ownership. Chen:Xencor, Inc.: Employment, Equity Ownership. Phung:Xencor, Inc.: Employment, Equity Ownership. Chan:Xencor, Inc.: Employment, Equity Ownership. Endo:Xencor, Inc.: Employment, Equity Ownership. Rashid:Xencor, Inc.: Employment, Equity Ownership. Bonzon:Xencor, Inc.: Employment, Equity Ownership. Leung:Xencor, Inc.: Employment, Equity Ownership. Muchhal:Xencor, Inc.: Employment, Equity Ownership. Moore:Xencor, Inc.: Employment, Equity Ownership. Bernett:Xencor, Inc.: Employment, Equity Ownership. Szymkowski:Xencor, Inc.: Employment, Equity Ownership. Desjarlais:Xencor, Inc.: Employment, Equity Ownership.
    Print ISSN: 0006-4971
    Electronic ISSN: 1528-0020
    Topics: Biology , Medicine
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 6
    Publication Date: 2014-12-06
    Description: Introduction.Graft versus host disease (GVHD) is a frequent and severe complication of allogeneic bone marrow transplantation (BMT). Novel and less toxic treatment regimens are needed to suppress GVHD and preserve graft versus tumor (GVT). Self-limited intestinal helminth colonization stimulates host regulatory T cell (Treg) subsets. The intestine is a prime organ in GVHD generation, with Tregs playing a pivotal role in controlling GVHD. Treg-mediated suppression of GVHD preserves GVT. We hypothesized that self-limited intestinal colonization with helminths protects BMT mice from lethal acute GVHD and preserves the GVT. Methods. Three weeks after administering 3rd stage adult Heligmosomoides polygyrus larvae into 5-6 week old male WT Balb/C recipient mice (H2d), we initiated H2b→H2d MHC I/II mismatch model of acute GVHD by total body irradiation (TBI; 850 cGy) and administration of total splenic T cells and T cell depleted (TCD) bone marrow (BM) cells from male C57BL/6 WT (MHC: H2b) donors into uninfected control and helminth-infected male wild-type (WT) Balb/C (MHC: H2d) bone marrow recipients. In certain experiments, we used donor T cells from TGFβ RII dominant negative (DN) (TGFβ RII DN) mice (MHC: H2b) whose T cells are unresponsive to TGFβ-mediated immune regulation due to over-expression of a truncated TGFβ receptor II. Th1 (IFNγ, TNFα) cytokine generation was analyzed by ELISA. Splenic and mesenteric lymph node (MLN) cells were stained for H2b, H2d, T cell surface markers and FoxP3. Tissues were analyzed for GVHD-related inflammation. GVT was assessed in uninfected and helminth-infected BMT recipients by administration of luciferase expressing A20 leukemia/lymphoma cells (A20-luc; H2d) and IVIS imaging. Statistical and survival difference between groups was determined by Student’s t-test and Kaplan Meier curves, respectively. Results. Helminths increased ~3-fold CD4 T cell and FoxP3+ Treg TGFβ generation (p
    Print ISSN: 0006-4971
    Electronic ISSN: 1528-0020
    Topics: Biology , Medicine
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 7
    Publication Date: 1970-10-01
    Description: In the present study, the red blood cell pipette was tested and found to be a suitable viscometer for detection of the hyperviscosity syndrome in multiple myeloma and macroglobulinemia. Additional studies demonstrated that in normal subjects and in most patients there was little difference in relative viscosity values whether serum or plasma was used and whether the test was performed at room temperature or 37° C. Based on these observations, a rapid screening test for the measurement of serum or plasma viscosities was described.
    Print ISSN: 0006-4971
    Electronic ISSN: 1528-0020
    Topics: Biology , Medicine
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 8
    Publication Date: 2014-12-06
    Description: Background: Familial MPNs are uncommon disorders that, like sporadic cases, are characterized by clonal hematopoiesis and presence of somatic mutations, e.g. JAK2, CALR, MPL and occasionally TET2. There is little information, however, about germ-line mutations in these families that may explain the low penetrance hereditary predisposition. Methods: We studied five families with MPNs, each with at least 2 affected members. After obtaining an informed consent, clinical data was obtained from the patients’ electronic medical records. Blood and buccal samples were collected from patients and unaffected relatives. Exome sequencing was performed on the blood DNA samples using Agilent SureSelect Human All Exon V5+UTRs exome capture kit followed by massively parallel sequencing with Illumina HiSeq 2000. Sanger sequencing was then done on both the blood and buccal swab DNA samples to validate selected gene variants and to differentiate the nature of those variants (germ line or somatic). Results: The 5 families participating in this study had the following diagnoses: 1. Mother: polycythemia vera (PV); son: essential thrombocythemia (ET), 2. Mother: primary myelofibrosis (MF); daughter: unclassifiable MPN (UMPN), 3. Father: PV; son: PV, 4. Sister: MF; sister: MF, 5. Two aunts: MF; niece; UMPN. Six patients were positive for JAK2, V617F mutation. Blood and buccal samples were collected from 5 patients and 4 relatives. In all 5 families, the pro-band was younger at the time of diagnosis than his/her affected relatives. The clinical course of the MPNs appeared to be similar to the sporadic form. Exome sequencing revealed TET2 mutations in 2 probands. In addition, novel non-synonymous mutations in several candidate genes, KMT2D, KMT2C, NBEAL1, NBEAL2, AHNAK2, RNF213, were identified in the blood samples from the patients but not their unaffected relatives. These include two novel KMT2D mutations in two unrelated families. These 2 mutations were also found in the matching buccal swab samples, indicating that they are germ line mutations. Discussion: KMT2D and KMT2C mutations have been previously identified as somatic mutations in lymphoid malignancies, including non-Hodgkin’s lymphomas (Morin 2011), and as germ line compound heterozygote mutations in infant MLL and ALL (Valentine 2014). About 32% of diffuse large cell lymphoma and 89% of follicular lymphoma have somatic mutations of KMT2D. NBEAL2 germ line mutations are associated with familial gray platelet syndrome, where some patients have myelofibrosis (Gunay-Aygun 2011). To our knowledge, this is the first report describing germ line mutations in familial MPNs. The possible role of these mutations in predisposition to MPN will be discussed. Studies on additional families with MPNs are planned. Disclosures No relevant conflicts of interest to declare.
    Print ISSN: 0006-4971
    Electronic ISSN: 1528-0020
    Topics: Biology , Medicine
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 9
    Publication Date: 2016-12-02
    Description: Neurologic toxicity has been observed with anti-CD19 chimeric antigen receptor (CAR) T cells and the anti-CD19 BiTE blinatumomab. Both focal (e.g., cranial nerve palsy) and global (e.g., generalized seizures) abnormalities have been reported, often associated with systemic cytokine release syndrome (CRS) but also observed after recovery from or in absence of CRS. CART-BCMA consists of expanded autologous T cells transduced with a 4-1BB:CD3-zeta-based CAR specific for B Cell Maturation Antigen. Here, we report clinical features and management of a severe neurotoxicity observed on a phase 1 trial of CART-BCMA for multiple myeloma (MM) (NCT02546167). The subject is a 55-year-old female with high-risk IgA lambda MM. At time of CART-BCMA infusion, her MM manifestations included cytopenias and plasmacytomas of the pleura and paravertebral muscles. Bone marrow (BM) was 〉95% BCMA+ plasma cells. Pre-treatment brain MRI showed pachymeningeal thickening and enhancement over the left cerebral convexity, possibly due to extension of calvarial MM lesions. There was no evidence of CNS MM on a neurologist's exam or by CSF cytology. The subject received 2x108 CART-BCMA cells, 40% of the planned dose, over two consecutive days, without lymphodepleting chemotherapy; a third planned infusion was held due to fevers. Over the next 4 days, fevers persisted, hypoxia and delirium developed, and cytopenias worsened. Brain MRI and lumbar puncture on day 4 showed no new abnormalities. Evaluation for infection was negative. These symptoms coincided with rise in serum IL-6 (nl range
    Print ISSN: 0006-4971
    Electronic ISSN: 1528-0020
    Topics: Biology , Medicine
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 10
    Publication Date: 2000-12-15
    Description: Bone marrow cells (BMCs) from CXB-12/HiaJ (CXB-12) mice had 14 times the total long-term repopulating ability found in the best of 11 other CXB recombinant inbred (RI) lines. BMCs from each RI line donor were mixed with genetically marked standard competitor BMCs from the BALB/cBy×C57BL/6 F1 (CByB6F1) hybrid, the mice used to produce the RI lines, and the mixtures repopulated lethally irradiated CByB6F1 recipients. Percentages of donor-type erythrocytes and lymphocytes measured the actual long-term repopulating functions of the donor RI lines relative to the standard competitor. CXB-12 BMCs repopulated better after 3 or 6 months than after 1 month, suggesting that the most primitive precursors were involved. Compared to CByB6F1 standard competitor cells, CXB-12 cells repopulated 3 to 12 times as well, with their advantage increasing when higher doses of cells were transplanted, probably because of hybrid resistance of the recipient against low doses. This was far better than expected, because F1 cells normally function 2 to 3 times as well as cells from an inbred strain. In competitive dilution, the advantage resulted from 2 factors: more precursor cells and more function per precursor. In the model that best fit the data, CXB-12 donors had 2.4 times the concentration of hematopoietic stem cells (HSCs) as the CByB6F1 standard, and each HSC repopulated 1.4 times as well. CXB-12 mice did not have elevated erythrocyte and lymphocyte numbers in blood and marrow and did not have unusually elevated concentrations of colony-forming unit spleen, cobblestone colonies, and long-term colony-initiating cells in marrow.
    Print ISSN: 0006-4971
    Electronic ISSN: 1528-0020
    Topics: Biology , Medicine
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...