ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
Filter
  • American Physiological Society, APS  (1)
  • Federation of American Societies for Experimental Biology  (1)
Collection
Publisher
Years
  • 1
    facet.materialart.
    Unknown
    American Physiological Society, APS
    In:  American Journal of Physiology: Regulatory, Integrative and Comparative Physiology, 301 (6). R1700-R1709.
    Publication Date: 2019-09-23
    Description: The constraints of an active life in a pelagic habitat led to numerous convergent morphological and physiological adaptations that enable cephalopod molluscs and teleost fishes to compete for similar resources. Here we show for the first time that such convergent developments are also found in the ontogenetic progression of ion regulatory tissues: as in teleost fish epidermal ionocytes scattered on skin and yolk sac of cephalopod embryos appear to be responsible for ionic and acid-base regulation before gill epithelia become functional. Ion and acid-base regulation is crucial in cephalopod embryos, as they are surrounded by a hypercapnic egg fluid with a pCO2 of 0.2-0.4 kPa. Epidermal ionocytes were characterized via immunohistochemistry, in situ hybridization and vital dye staining techniques. We found one group of cells that is recognized by Concavalin A and MitoTracker, which also expresses Na+/H+ exchangers (NHE) and Na+/K+-ATPase. Similar to findings obtained in teleosts these NHE3-rich cells take up sodium in exchange for protons, illustrating the energetic superiority of NHE based proton excretion in marine systems. In vivo electrophysiological techniques demonstrated that acid equivalents are secreted by the yolk and skin integument. Intriguingly, epidermal ionocytes of cephalopod embryos are ciliated as demonstrated by scanning electron microscopy suggesting a dual function of epithelial cells in water convection and ion regulation. These findings add significant knowledge to our mechanistic understanding of hypercapnia tolerance in marine organisms, as it demonstrates that marine taxa which were identified as powerful acid-base regulators during hypercapnic challenges already exhibit strong acid-base regulatory abilities during embryogenesis.
    Type: Article , PeerReviewed
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 2
    facet.materialart.
    Unknown
    Federation of American Societies for Experimental Biology
    In:  Faseb Journal, 26 (1, Suppl.). 1070.1.
    Publication Date: 2019-02-27
    Description: The present study provides a first finding of the acid-base regulating machinery (ion-transporters relevant for acid-base regulation) in cephalopod, and series of studies showed that they exhibit specialized ion regulatory cells (ionocytes) on their skin and yolk epithelium. A feature that was so far only reported for fish. In addition, several ion regulatory genes were identified in cephalopod to be involved in the compensation of CO2 induced acid-base disturbances, including Na+/H+-exchanger (NHE3), ammonium transporters (Rhcg) and vacuolar H+-ATPase (VHA) by being significantly up regulated in response to elevated sea water pCO2. Here we show for the first time that cephalopod embryos exhibit epidermal ionocytes and that the skin is a mayor site for proton excretion. Similar to fish, ionocytes located on the skin and yolk of cephalopod embryos are characterized by high concentrations of mitochondria. These similar responses towards elevated water pCO2 and sensitivity thresholds during life history may be explained by convergent acid-base regulatory features of cephalopods and fish.
    Type: Article , NonPeerReviewed
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...