ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
Filter
  • Other Sources  (33)
  • Copernicus Publications (EGU)  (26)
  • Nature Publishing Group  (7)
  • American Physical Society (APS)
  • Springer Nature
  • 1
    Publication Date: 2019-02-01
    Description: Southeast Asian rivers convey large amounts of organic carbon, but little is known about the fate of this terrestrial material in estuaries. Although Southeast Asia is, by area, considered a hotspot of estuarine carbon dioxide (CO2) emissions, studies in this region are very scarce. We measured dissolved and particulate organic carbon, as well as CO2 partial pressures and carbon monoxide (CO) concentrations in two tropical estuaries in Sarawak, Malaysia, whose coastal area is covered by carbon-rich peatlands. We surveyed the estuaries of the rivers Lupar and Saribas during the wet and dry season, respectively. Carbon-to-nitrogen ratios suggest that dissolved organic matter (DOM) is largely of terrestrial origin. We found evidence that a large fraction of this carbon is respired. The median pCO(2) in the estuaries ranged between 640 and 5065 mu atm with little seasonal variation. CO2 fluxes were determined with a floating chamber and estimated to amount to 14-268 mol m(-2) yr(-1), which is high compared to other studies from tropical and subtropical sites. Estimates derived from a merely wind-driven turbulent diffusivity model were considerably lower, indicating that these models might be inappropriate in estuaries, where tidal currents and river discharge make an important contribution to the turbulence driving water-air gas exchange. Although an observed diurnal variability of CO concentrations suggested that CO was photochemically produced, the overall concentrations and fluxes were relatively moderate (0.4-1.3 nmol L-1 and 0.7-1.8 mmol m(-2) yr(-1)) if compared to published data for oceanic or upwelling systems. We attributed this to the large amounts of suspended matter (4-5004 mg L-1), limiting the light penetration depth and thereby inhibiting CO photoproduction. We concluded that estuaries in this region function as an efficient filter for terrestrial organic carbon and release large amounts of CO2 to the atmosphere. The Lupar and Saribas rivers deliver 0.3 +/- 0.2 TgC yr(-1) to the South China Sea as organic carbon and their mid-estuaries release approximately 0.4 +/- 0.2 TgC yr(-1) into the atmosphere as CO2.
    Type: Article , PeerReviewed
    Format: text
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 2
    Publication Date: 2019-02-01
    Description: Estuaries are sources of nitrous oxide (N2O) and methane (CH4) to the atmosphere. However, our present knowledge of N2O and CH4 emissions from estuaries in the tropics is very limited because data are scarce. In this study, we present first measurements of dissolved N2O and CH4 from two estuaries in a peat-dominated region of northwestern Borneo. Two campaigns (during the dry season in June 2013 and during the wet season in March 2014) were conducted in the estuaries of the Lupar and Saribas rivers. Median N2O concentrations ranged between 7.2 and 12.3 nmol L−1 and were higher in the marine end-member (13.0 ± 7.0 nmol L−1). CH4 concentrations were low in the coastal ocean (3.6 ± 0.2 nmol L−1) and higher in the estuaries (medians between 10.6 and 64.0 nmol L−1). The respiration of abundant organic matter and presumably anthropogenic input caused slight eutrophication, which did not lead to hypoxia or enhanced N2O concentrations, however. Generally, N2O concentrations were not related to dissolved inorganic nitrogen concentrations. Thus, the use of an emission factor for the calculation of N2O emissions from the inorganic nitrogen load leads to an overestimation of the flux from the Lupar and Saribas estuaries. N2O was negatively correlated with salinity during the dry season, which suggests a riverine source. In contrast, N2O concentrations during the wet season were not correlated with salinity but locally enhanced within the estuaries, implying that there were additional estuarine sources during the wet (i.e., monsoon) season. Estuarine CH4 distributions were not driven by freshwater input but rather by tidal variations. Both N2O and CH4 concentrations were more variable during the wet season. We infer that the wet season dominates the variability of the N2O and CH4 concentrations and subsequent emissions from tropical estuaries. Thus, we speculate that any changes in the Southeast Asian monsoon system will lead to changes in the N2O and CH4 emissions from these systems. We also suggest that the ongoing cultivation of peat soil in Borneo is likely to increase N2O emissions from these estuaries, while the effect on CH4 remains uncertain.
    Type: Article , PeerReviewed , info:eu-repo/semantics/article
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 3
    Publication Date: 2014-03-24
    Description: Mass deposition fluxes of mineral dust to the tropical northeast Atlantic Ocean were determined within this study. In the framework of SOPRAN (Surface Ocean Processes in the Anthropocene), the interaction between the atmosphere and the ocean in terms of material exchange were investigated at the Cape Verde atmospheric observatory (CVAO) on the island Sao Vicente for January 2009. Five different methods were applied to estimate the deposition flux, using different meteorological and physical measurements, remote sensing, and regional dust transport simulations. The set of observations comprises micrometeorological measurements with an ultra-sonic anemometer and profile measurements using 2-D anemometers at two different heights, and microphysical measurements of the size-resolved mass concentrations of mineral dust. In addition, the total mass concentration of mineral dust was derived from absorption photometer observations and passive sampling. The regional dust model COSMO-MUSCAT was used for simulations of dust emission and transport, including dry and wet deposition processes. This model was used as it describes the AOD's and mass concentrations realistic compared to the measurements and because it was run for the time period of the measurements. The four observation-based methods yield a monthly average deposition flux of mineral dust of 12–29 ng m−2 s−1. The simulation results come close to the upper range of the measurements with an average value of 47 ng m−2 s−1. It is shown that the mass deposition flux of mineral dust obtained by the combination of micrometeorological (ultra-sonic anemometer) and microphysical measurements (particle mass size distribution of mineral dust) is difficult to compare to modeled mass deposition fluxes when the mineral dust is inhomogeneously distributed over the investigated area.
    Type: Article , PeerReviewed
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 4
    Publication Date: 2020-06-24
    Description: The synthetic production of monodisperse single magnetic domain nanoparticles at ambient temperature is challenging. In nature, magnetosomes--membrane-bound magnetic nanocrystals with unprecedented magnetic properties--can be biomineralized by magnetotactic bacteria. However, these microbes are difficult to handle. Expression of the underlying biosynthetic pathway from these fastidious microorganisms within other organisms could therefore greatly expand their nanotechnological and biomedical applications. So far, this has been hindered by the structural and genetic complexity of the magnetosome organelle and insufficient knowledge of the biosynthetic functions involved. Here, we show that the ability to biomineralize highly ordered magnetic nanostructures can be transferred to a foreign recipient. Expression of a minimal set of genes from the magnetotactic bacterium Magnetospirillum gryphiswaldense resulted in magnetosome biosynthesis within the photosynthetic model organism Rhodospirillum rubrum. Our findings will enable the sustainable production of tailored magnetic nanostructures in biotechnologically relevant hosts and represent a step towards the endogenous magnetization of various organisms by synthetic biology.
    Type: Article , PeerReviewed
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 5
    Publication Date: 2021-03-04
    Description: Numerous studies have been conducted on the effect of ocean acidification on calcifiers inhabiting nearshore benthic habitats, such as the blue mussel Mytilus edulis. The majority of these experiments was performed under stable CO2 partial pressure (pCO2), carbonate chemistry and oxygen (O2) levels, reflecting present or expected future open ocean conditions. Consequently, levels and variations occurring in coastal habitats, due to biotic and abiotic processes, were mostly neglected, even though these variations largely override global long-term trends. To highlight this hiatus and guide future research, state-of-the-art technologies were deployed to obtain high-resolution time series of pCO2 and [O2] on a mussel patch within a Zostera marina seagrass bed, in Kiel Bay (western Baltic Sea) in August and September 2013. Combining the in situ data with results of discrete sample measurements, a full seawater carbonate chemistry was derived using statistical models. An average pCO2 more than 50 % (~ 640 µatm) higher than current atmospheric levels was found right above the mussel patch. Diel amplitudes of pCO2 were large: 765 ± 310 (mean ± SD). Corrosive conditions for calcium carbonates (Ωarag and Ωcalc 〈 1) centered on sunrise were found, but the investigated habitat never experienced hypoxia throughout the study period. It is estimated that mussels experience conditions limiting calcification for 12–15 h per day, based on a regional calcium carbonate concentration physiological threshold. Our findings call for more extensive experiments on the impact of fluctuating corrosive conditions on mussels. We also stress the complexity of the interpretation of carbonate chemistry time series data in such dynamic coastal environments.
    Type: Article , NonPeerReviewed
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 6
    Publication Date: 2017-06-09
    Description: The new aromatic polyketides genoketide A1, genoketide A2 and prechrysophanol glucuronide are biosynthetic intermediates of the octaketide chrysophanol. They were isolated from the alkaliphilic strain Streptomyces sp. AK 671 together with the new metabolite chrysophanol glucuronide. The structures of the compounds were elucidated by mass spectrometry and NMR methods. Genoketide A2 exhibited a slight and prechrysophanol glucuronide a more pronounced inhibition of the proliferation of L5178y lymphoma cells.
    Type: Article , PeerReviewed
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 7
    Publication Date: 2015-05-28
    Description: The first long-term aerosol sampling and chemical characterization results from measurements at the Cape Verde Atmospheric Observatory (CVAO) on the island of São Vicente are presented and are discussed with respect to air mass origin and seasonal trends. In total 671 samples were collected using a high-volume PM10 sampler on quartz fiber filters from January 2007 to December 2011. The samples were analyzed for their aerosol chemical composition, including their ionic and organic constituents. Back trajectory analyses showed that the aerosol at CVAO was strongly influenced by emissions from Europe and Africa, with the latter often responsible for high mineral dust loading. Sea salt and mineral dust dominated the aerosol mass and made up in total about 80% of the aerosol mass. The 5-year PM10 mean was 47.1 ± 55.5 μg m−2, while the mineral dust and sea salt means were 27.9 ± 48.7 and 11.1 ± 5.5 μg m−2, respectively. Non-sea-salt (nss) sulfate made up 62% of the total sulfate and originated from both long-range transport from Africa or Europe and marine sources. Strong seasonal variation was observed for the aerosol components. While nitrate showed no clear seasonal variation with an annual mean of 1.1 ± 0.6 μg m−3, the aerosol mass, OC (organic carbon) and EC (elemental carbon), showed strong winter maxima due to strong influence of African air mass inflow. Additionally during summer, elevated concentrations of OM were observed originating from marine emissions. A summer maximum was observed for non-sea-salt sulfate and was connected to periods when air mass inflow was predominantly of marine origin, indicating that marine biogenic emissions were a significant source. Ammonium showed a distinct maximum in spring and coincided with ocean surface water chlorophyll a concentrations. Good correlations were also observed between nss-sulfate and oxalate during the summer and winter seasons, indicating a likely photochemical in-cloud processing of the marine and anthropogenic precursors of these species. High temporal variability was observed in both chloride and bromide depletion, differing significantly within the seasons, air mass history and Saharan dust concentration. Chloride (bromide) depletion varied from 8.8 ± 8.5% (62 ± 42%) in Saharan-dust-dominated air mass to 30 \textpm 12% (87 ± 11%) in polluted Europe air masses. During summer, bromide depletion often reached 100% in marine as well as in polluted continental samples. In addition to the influence of the aerosol acidic components, photochemistry was one of the main drivers of halogenide depletion during the summer; while during dust events, displacement reaction with nitric acid was found to be the dominant mechanism. Positive matrix factorization (PMF) analysis identified three major aerosol sources: sea salt, aged sea salt and long-range transport. The ionic budget was dominated by the first two of these factors, while the long-range transport factor could only account for about 14% of the total observed ionic mass.
    Type: Article , PeerReviewed
    Format: text
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 8
    Publication Date: 2016-11-03
    Description: Cold-water corals (CWC) are widely distributed around the world forming extensive reefs at par with tropical coral reefs. They are hotspots of biodiversity and organic matter processing in the world’s deep oceans. Living in the dark they lack photosynthetic symbionts and are therefore considered to depend entirely on the limited flux of organic resources from the surface ocean. While symbiotic relations in tropical corals are known to be key to their survival in oligotrophic conditions, the full metabolic capacity of CWC has yet to be revealed. Here we report isotope tracer evidence for efficient nitrogen recycling, including nitrogen assimilation, regeneration, nitrification and denitrification. Moreover, we also discovered chemoautotrophy and nitrogen fixation in CWC and transfer of fixed nitrogen and inorganic carbon into bulk coral tissue and tissue compounds (fatty acids and amino acids). This unrecognized yet versatile metabolic machinery of CWC conserves precious limiting resources and provides access to new nitrogen and organic carbon resources that may be essential for CWC to survive in the resource-depleted dark ocean.
    Type: Article , PeerReviewed , info:eu-repo/semantics/article
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 9
    Publication Date: 2019-09-23
    Description: Ocean islands, seamounts and volcanic ridges are thought to form above mantle plumes. Yet, this mechanism cannot explain many volcanic features on the Pacific Ocean floor and some might instead be caused by cracks in the oceanic crust linked to the reorganization of plate motions. A distinctive bend in the Hawaiian–Emperor volcanic chain has been linked to changes in the direction of motion of the Pacific Plate, movement of the Hawaiian plume, or a combination of both. However, these links are uncertain because there is no independent record that precisely dates tectonic events that affected the Pacific Plate. Here we analyse the geochemical characteristics of lava samples collected from the Musicians Ridges, lines of volcanic seamounts formed close to the Hawaiian–Emperor bend. We find that the geochemical signature of these lavas is unlike typical ocean island basalts and instead resembles mid-ocean ridge basalts. We infer that the seamounts are unrelated to mantle plume activity and instead formed in an extensional setting, due to deformation of the Pacific Plate. 40Ar/39Ar dating reveals that the Musicians Ridges formed during two time windows that bracket the time of formation of the Hawaiian–Emperor bend, 53–52 and 48–47 million years ago. We conclude that the Hawaiian–Emperor bend was formed by plate–mantle reorganization, potentially triggered by a series of subduction events at the Pacific Plate margins.
    Type: Article , PeerReviewed
    Format: text
    Format: text
    Format: archive
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 10
    Publication Date: 2017-12-19
    Description: Marine phytoplankton have developed the remarkable ability to tightly regulate the concentration of free calcium ions in the intracellular cytosol at a level of ~ 0.1 μmol L−1 in the presence of seawater Ca2+ concentrations of 10 mmol L−1. The low cytosolic calcium ion concentration is of utmost importance for proper cell signalling function. While the regulatory mechanisms responsible for the tight control of intracellular Ca2+ concentration are not completely understood, phytoplankton taxonomic groups appear to have evolved different strategies, which may affect their ability to cope with changes in seawater Ca2+ concentrations in their environment on geological timescales. For example, the Cretaceous (145 to 66 Ma), an era known for the high abundance of coccolithophores and the production of enormous calcium carbonate deposits, exhibited seawater calcium concentrations up to 4 times present-day levels. We show that calcifying coccolithophore species (Emiliania huxleyi, Gephyrocapsa oceanica and Coccolithus braarudii) are able to maintain their relative fitness (in terms of growth rate and photosynthesis) at simulated Cretaceous seawater calcium concentrations, whereas these rates are severely reduced under these conditions in some non-calcareous phytoplankton species (Chaetoceros sp., Ceratoneis closterium and Heterosigma akashiwo). Most notably, this also applies to a non-calcifying strain of E. huxleyi which displays a calcium sensitivity similar to the non-calcareous species. We hypothesize that the process of calcification in coccolithophores provides an efficient mechanism to alleviate cellular calcium poisoning and thereby offered a potential key evolutionary advantage, responsible for the proliferation of coccolithophores during times of high seawater calcium concentrations. The exact function of calcification and the reason behind the highly ornate physical structures of coccoliths remain elusive.
    Type: Article , PeerReviewed
    Format: text
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...