ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
Filter
  • American Meteorological Society  (83)
  • 1
    Publication Date: 2020-06-01
    Description: Heated tipping-bucket (TB) gauges are used broadly in national weather monitoring networks, but their performance for the measurement of solid precipitation has not been well characterized. Manufacturer-provided TB gauges were evaluated at five test sites during the World Meteorological Organization Solid Precipitation Intercomparison Experiment (WMO-SPICE), with most gauge types tested at more than one site. The test results were used to develop and evaluate adjustments for the undercatch of solid precipitation by heated TB gauges. New methods were also developed to address challenges specific to measurements from heated TB gauges. Tipping-bucket transfer functions were created specifically to minimize the sum of errors over the course of the adjusted multiseasonal accumulation. This was based on the hypothesis that the best transfer function produces the most accurate long-term precipitation records, rather than accurate catch efficiency measurements or accurate daily or hourly precipitation measurements. Using this new approach, an adjustment function derived from multiple gauges was developed that performed better than traditional gauge-specific and multigauge catch efficiency derived adjustments. Because this new multigauge adjustment was developed using six different types of gauges tested at five different sites, it may be applicable to solid precipitation measurements from unshielded heated TB gauges that were not evaluated in WMO-SPICE. In addition, this new method of optimizing transfer functions may be useful for other types of precipitation gauges, as it has many practical advantages over the traditional catch efficiency methods used to derive undercatch adjustments.
    Print ISSN: 1525-755X
    Electronic ISSN: 1525-7541
    Topics: Geography , Geosciences , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 2
    Publication Date: 2018-03-01
    Description: Weather and climate variability strongly influence the people, infrastructure, and economy of Alaska. However, the sparse observational network in Alaska limits our understanding of meteorological variability, particularly of precipitation processes that influence the hydrologic cycle. Here, a new 14-yr (September 2002–August 2016) dataset for Alaska with 4-km grid spacing is described and evaluated. The dataset, generated with the Weather Research and Forecasting (WRF) Model, is useful for gaining insight into meteorological and hydrologic processes, and provides a baseline against which to measure future environmental change. The WRF fields are evaluated at annual, seasonal, and daily time scales against observation-based gridded and station records of 2-m air temperature, precipitation, and snowfall. Pattern correlations between annual mean WRF and observation-based gridded fields are r = 0.89 for 2-m temperature, r = 0.75 for precipitation, r = 0.82 for snow-day fraction, r = 0.55 for first snow day of the season, and r = 0.71 for last snow day of the season. A shortcoming of the WRF dataset is that spring snowmelt occurs too early over a majority of the state, due partly to positive 2-m temperature biases in winter and spring. Strengths include an improved representation of the interannual variability of 2-m temperature and precipitation and accurately simulated (relative to regional station observations) winter and summer precipitation maxima. This initial evaluation suggests that the 4-km WRF climate dataset robustly simulates meteorological processes and recent climatic variability in Alaska. The dataset may be particularly useful for applications that require high-temporal-frequency weather fields, such as driving hydrologic or glacier models. Future studies will provide further insight on its ability to represent other aspects of Alaska’s climate.
    Print ISSN: 1558-8424
    Electronic ISSN: 1558-8432
    Topics: Geography , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 3
    Publication Date: 2018-04-06
    Description: Tropical cyclones have enormous costs to society through both loss of life and damage to infrastructure. There is good reason to believe that such storms will change in the future as a result of changes in the global climate system and that such changes may have important socioeconomic implications. Here a high-resolution regional climate modeling experiment is presented using the Weather Research and Forecasting (WRF) Model to investigate possible changes in tropical cyclones. These simulations were performed for the period 2001–13 using the ERA-Interim product for the boundary conditions, thus enabling a direct comparison between modeled and observed cyclone characteristics. The WRF simulation reproduced 30 of the 32 named storms that entered the model domain during this period. The model simulates the tropical cyclone tracks, storm radii, and translation speeds well, but the maximum wind speeds simulated were less than observed and the minimum central pressures were too large. This experiment is then repeated after imposing a future climate signal by adding changes in temperature, humidity, pressure, and wind speeds derived from phase 5 of the Coupled Model Intercomparison Project (CMIP5). In the current climate, 22 tracks were well simulated with little changes in future track locations. These simulations produced tropical cyclones with faster maximum winds, slower storm translation speeds, lower central pressures, and higher precipitation rates. Importantly, while these signals were statistically significant averaged across all 22 storms studied, changes varied substantially between individual storms. This illustrates the importance of using a large ensemble of storms to understand mean changes.
    Print ISSN: 0894-8755
    Electronic ISSN: 1520-0442
    Topics: Geography , Geosciences , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 4
    Publication Date: 2017-01-06
    Description: Recent advances in high-performance computing have enabled higher-resolution numerical weather models with increasingly complex data assimilation and more accurate physical parameterizations. With respect to aircraft and ground icing applications, a weather model’s cloud physics scheme is responsible for the direct forecasts of the water phase and amount and is a critical ingredient to forecasting future icing conditions. In this paper, numerical model results are compared with aircraft observations taken during icing research flights, and the general characteristics of liquid water content, median volume diameter, droplet concentration, and temperature within aircraft icing environments are evaluated. The comparison reveals very promising skill by the model in predicting these characteristics consistent with observations. The application of model results to create explicit forecasts of ice accretion rates for an example case of aircraft and ground icing is shown.
    Print ISSN: 0882-8156
    Electronic ISSN: 1520-0434
    Topics: Geography , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 5
    Publication Date: 2016-12-29
    Description: This study uses the WRF large-eddy simulation model at 100-m resolution to examine the impact of ground-based glaciogenic seeding on shallow (~2 km deep), cold-based convection producing light snow showers over the Sierra Madre in southern Wyoming on 13 February 2012, as part of the AgI Seeding Cloud Impact Investigation (ASCII). Detailed observations confirm that simulation faithfully captures the orographic flow, convection, and natural snow production, especially on the upwind side. A comparison between treated and control simulations indicates that glaciogenic seeding effectively converts cloud water in convective updrafts to ice and snow in this case, resulting in increased surface precipitation. This comparison further shows that seeding enhances liquid water depletion by vapor deposition, and enhances buoyancy, updraft strength, and cloud-top height. This suggests that the dynamic seeding concept applies, notwithstanding the clouds’ low natural supercooled liquid water content. But the simulated cloud-top-height changes are benign (typically
    Print ISSN: 1558-8424
    Electronic ISSN: 1558-8432
    Topics: Geography , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 6
    Publication Date: 2016-02-01
    Description: Several Weather Research and Forecasting (WRF) Model simulations of natural and seeded clouds have been conducted in non-LES and LES (large-eddy simulation) modes to investigate the seeding impact on wintertime orographic clouds for an actual seeding case on 18 February 2009 in the Medicine Bow Mountains of Wyoming. Part I of this two-part series has shown the capability of WRF LES with 100-m grid spacing to capture the essential environmental conditions by comparing the model results with measurements from a variety of instruments. In this paper, the silver iodide (AgI) dispersion features, the AgI impacts on the turbulent kinetic energy (TKE), the microphysics, and the precipitation are examined in detail using the model data, which leads to five main results. 1) The vertical dispersion of AgI particles is more efficient in cloudy conditions than in clear conditions. 2) The wind shear and the buoyancy are both important TKE production mechanisms in the wintertime PBL over complex terrain in cloudy conditions. The buoyancy-induced eddies are more responsible for the AgI vertical dispersion than the shear-induced eddies are. 3) Seeding has insignificant effects on the cloud dynamics. 4) AgI particles released from the ground-based generators affect the cloud within the boundary layer below 1 km AGL through nucleating extra ice crystals, converting liquid water into ice, depleting more vapor, and generating more precipitation on the ground. The AgI nucleation rate is inversely related to the natural ice nucleation rate. 5) The seeding effects on the ground precipitation are confined within narrow areas. The relative seeding effect ranges between 5% and 20% for the simulations with different grid spacing.
    Print ISSN: 1558-8424
    Electronic ISSN: 1558-8432
    Topics: Geography , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 7
    Publication Date: 2016-03-01
    Description: With limited computational resources, there is a need for computationally frugal models. This is particularly the case for atmospheric sciences, which have long relied on either simplistic analytical solutions or computationally expensive numerical models. The simpler solutions are inadequate for many problems, while the cost of numerical models makes their use impossible for many problems, most notably high-resolution climate downscaling applications spanning large areas, long time periods, and many global climate projections. Here the Intermediate Complexity Atmospheric Research model (ICAR) is presented to provide a new step along the modeling complexity continuum. ICAR leverages an analytical solution for high-resolution perturbations to wind velocities, in conjunction with numerical physics schemes, that is, advection and cloud microphysics, to simulate the atmosphere. The focus of the initial development of ICAR is for predictions of precipitation, and eventually temperature, humidity, and radiation at the land surface. Comparisons between ICAR and the Weather Research and Forecasting (WRF) Model for simulations over an idealized mountain are presented, as well as among ICAR, WRF, and the Parameter-Elevation Regressions on Independent Slopes Model (PRISM) observation-based product for a year-long simulation over the Colorado Rockies. In the ideal simulations, ICAR matches WRF precipitation predictions across a range of environmental conditions with a coefficient of determination r2 of 0.92. In the Colorado Rockies, ICAR, WRF, and PRISM show very good agreement, with differences between ICAR and WRF comparable to the differences between WRF and PRISM in the cool season. For these simulations, WRF required 140–800 times more computational resources than ICAR.
    Print ISSN: 1525-755X
    Electronic ISSN: 1525-7541
    Topics: Geography , Geosciences , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 8
    Publication Date: 2015-12-21
    Description: The use of windshields to reduce the impact of wind on snow measurements is common. This paper investigates the catching performance of shielded and unshielded gauges using numerical simulations. In Part II, the role of the windshield and gauge aerodynamics, as well as the varying flow field due to the turbulence generated by the shield–gauge configuration, in reducing the catch efficiency is investigated. This builds on the computational fluid dynamics results obtained in Part I, where the airflow patterns in the proximity of an unshielded and single Alter shielded Geonor T-200B gauge are obtained using both time-independent [Reynolds-averaged Navier–Stokes (RANS)] and time-dependent [large-eddy simulation (LES)] approaches. A Lagrangian trajectory model is used to track different types of snowflakes (wet and dry snow) and to assess the variation of the resulting gauge catching performance with the wind speed. The collection efficiency obtained with the LES approach is generally lower than the one obtained with the RANS approach. This is because of the impact of the LES-resolved turbulence above the gauge orifice rim. The comparison between the collection efficiency values obtained in case of shielded and unshielded gauge validates the choice of installing a single Alter shield in a windy environment. However, time-dependent simulations show that the propagating turbulent structures produced by the aerodynamic response of the upwind single Alter blades have an impact on the collection efficiency. Comparison with field observations provides the validation background for the model results.
    Print ISSN: 1525-755X
    Electronic ISSN: 1525-7541
    Topics: Geography , Geosciences , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 9
    Publication Date: 2015-12-17
    Description: Radar and disdrometer observations collected during the 2013 Great Colorado Flood are used to diagnose the spatial and vertical structure of clouds and precipitation during episodes of intense rainfall. The analysis focuses on 30 h of intense rainfall in the vicinity of Boulder, Colorado, during 2200–0400 UTC 11–13 September. The strongest rainfall occurred along lower parts of the Colorado Front Range at 〉1.6 km MSL and on the northern side of the Palmer Divide. The vertical structure of clouds and horizontal distribution of rainfall are strongly linked to upslope flow and low-level forcing, which resulted in surface convergence. During times of weak forcing, shallow convection produced rain at and below the melting layer through collision–coalescence and, to a lesser extent, riming. A mesoscale circulation interacting with the local terrain produced convective rainfall with high cloud tops that favored ice crystal production. During moderate forcing with cloud tops slightly exceeding the 0°C level, both cold- and warm-phase microphysical processes dominated. Less rain with weaker rainfall rates was observed over the higher-elevation stations compared to the lower-elevation stations across the foothills.
    Print ISSN: 1525-755X
    Electronic ISSN: 1525-7541
    Topics: Geography , Geosciences , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 10
    Publication Date: 2015-12-21
    Description: The aerodynamic response of snow gauges when exposed to the wind is responsible for a significant reduction of their collection performance. The modifications induced by the gauge and the windshield onto the space–time patterns of the undisturbed airflow deviate the snowflake trajectories. In Part I, the disturbed air velocity field in the vicinity of shielded and unshielded gauge configurations is investigated. In Part II, the airflow is the basis for a particle tracking model of snowflake trajectories to estimate the collection efficiency. A Geonor T-200B gauge inside a single Alter shield is simulated for wind speeds varying from 1 to 8 m s−1. Both time-averaged and time-dependent computational fluid dynamics simulations are performed, based on Reynolds-averaged Navier–Stokes (RANS) and large-eddy simulation (LES) models, respectively. A shear stress tensor k–Ω model (where k is the turbulent kinetic energy and Ω is the turbulent specific dissipation rate) is used for the RANS formulation and solved within a finite-volume method. The LES is implemented with a Smagorinsky subgrid-scale method that models the subgrid stresses as a gradient-diffusion process. The RANS simulations confirm the attenuation of the airflow velocity above the gauge when using a single Alter shield, but the generated turbulence above the orifice rim is underestimated. The intensity and spatial extension of the LES-resolved turbulent region show a dependency on the wind speed that was not detected by the RANS. The time-dependent analysis showed the propagation of turbulent structures and the impact on the turbulent kinetic energy above the gauge collecting section.
    Print ISSN: 1525-755X
    Electronic ISSN: 1525-7541
    Topics: Geography , Geosciences , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...