ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    Publication Date: 2018-11-30
    Description: Historical time series of surface temperature and ocean heat content changes are commonly used metrics to diagnose climate change and estimate properties of the climate system. We show that recent trends, namely the slowing of surface temperature rise at the beginning of the 21st century and the acceleration of heat stored in the deep ocean, have a substantial impact on these estimates. Using the Massachusetts Institute of Technology Earth System Model (MESM), we vary three model parameters that influence the behavior of the climate system: effective climate sensitivity (ECS), the effective ocean diffusivity of heat anomalies by all mixing processes (Kv), and the net anthropogenic aerosol forcing scaling factor. Each model run is compared to observed changes in decadal mean surface temperature anomalies and the trend in global mean ocean heat content change to derive a joint probability distribution function for the model parameters. Marginal distributions for individual parameters are found by integrating over the other two parameters. To investigate how the inclusion of recent temperature changes affects our estimates, we systematically include additional data by choosing periods that end in 1990, 2000, and 2010. We find that estimates of ECS increase in response to rising global surface temperatures when data beyond 1990 are included, but due to the slowdown of surface temperature rise in the early 21st century, estimates when using data up to 2000 are greater than when data up to 2010 are used. We also show that estimates of Kv increase in response to the acceleration of heat stored in the ocean as data beyond 1990 are included. Further, we highlight how including spatial patterns of surface temperature change modifies the estimates. We show that including latitudinal structure in the climate change signal impacts properties with spatial dependence, namely the aerosol forcing pattern, more than properties defined for the global mean, climate sensitivity, and ocean diffusivity.
    Print ISSN: 2364-3579
    Electronic ISSN: 2364-3587
    Topics: Geosciences , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 2
    Publication Date: 2003-05-15
    Description: The transient response of both surface air temperature and deep ocean temperature to an increasing external forcing strongly depends on climate sensitivity and the rate of the heat mixing into the deep ocean, estimates for both of which have large uncertainty. In this paper a method for estimating rates of oceanic heat uptake for coupled atmosphere–ocean general circulation models from results of transient climate change simulations is described. For models considered in this study, the estimates vary by a factor of 2½. Nevertheless, values of oceanic heat uptake for all models fall in the range implied by the climate record for the last century. It is worth noting that the range of the model values is narrower than that consistent with observations and thus does not provide a full measure of the uncertainty in the rate of oceanic heat uptake.
    Print ISSN: 0894-8755
    Electronic ISSN: 1520-0442
    Topics: Geography , Geosciences , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 3
    Publication Date: 2003-05-01
    Description: The deep-ocean heat uptake (DOHU) in transient climate changes is studied using an ocean general circulation model (OGCM) and its adjoint. The model configuration consists of idealized Pacific and Atlantic basins. The model is forced with the anomalies of surface heat and freshwater fluxes from a global warming scenario with a coupled model using the same ocean configuration. In the global warming scenario, CO2 concentration increases 1% yr−1. The heat uptake calculated from the coupled model and from the adjoint are virtually identical, showing that the heat uptake by the OGCM is a linear process. After 70 yr the ocean heat uptake is almost evenly distributed within the layers above 200 m, between 200 and 700 m, and below 700 m (about 20 × 1022 J in each). The effect of anomalous surface freshwater flux on the DOHU is negligible. Analysis of the Coupled Model Intercomparison Project (CMIP-2) data for the same global warming scenario shows that qualitatively similar results apply to coupled atmosphere–ocean GCMs. The penetration of surface heat flux to the deep ocean in the OGCM occurs mainly in the North Atlantic and the Southern Ocean, since both the sensitivity of DOHU to the surface heat flux and the magnitude of anomalous surface heat flux are large in these two regions. The DOHU relies on the reduction of convection and Gent–McWilliams–Redi mixing in the North Atlantic, and the reduction of Gent–McWilliams–Redi mixing in the Southern Ocean.
    Print ISSN: 0894-8755
    Electronic ISSN: 1520-0442
    Topics: Geography , Geosciences , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 4
    Publication Date: 2003-10-01
    Print ISSN: 0894-8755
    Electronic ISSN: 1520-0442
    Topics: Geography , Geosciences , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 5
    Publication Date: 2005-07-01
    Description: The sensitivity of the ocean’s climate to the diapycnal diffusivity in the ocean is studied for a global warming scenario in which CO2 increases by 1% yr−1 for 75 yr. The thermohaline circulation slows down for about 100 yr and recovers afterward, for any value of the diapycnal diffusivity. The rates of slowdown and of recovery, as well as the percentage recovery of the circulation at the end of 1000-yr integrations, are variable, but a direct relation with the diapycnal diffusivity cannot be found. At year 70 (when CO2 has doubled) an increase of the diapycnal diffusivity from 0.1 to 1.0 cm2 s−1 leads to a decrease in surface air temperature of about 0.4 K and an increase in sea level rise of about 4 cm. The steric height gradient is divided into thermal component and haline component. It appears that, in the first 60 yr of simulated global warming, temperature variations dominate the salinity ones in weakly diffusive models, whereas the opposite occurs in strongly diffusive models. The analysis of the vertical heat balance reveals that deep-ocean heat uptake is due to reduced upward isopycnal diffusive flux and parameterized-eddy advective flux. Surface warming, induced by enhanced CO2 in the atmosphere, leads to a reduction of the isopycnal slope, which translates into a reduction of the above fluxes. The amount of reduction is directly related to the magnitude of the isopycnal diffusive flux and parameterized-eddy advective flux at equilibrium. These latter fluxes depend on the thickness of the thermocline at equilibrium and hence on the diapycnal diffusion. Thus, the increase of deep-ocean heat uptake with diapycnal diffusivity is an indirect effect that the latter parameter has on the isopycnal diffusion and parameterized-eddy advection.
    Print ISSN: 0894-8755
    Electronic ISSN: 1520-0442
    Topics: Geography , Geosciences , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 6
    Publication Date: 2006-07-01
    Description: Simulation of both the climate of the twentieth century and a future climate change requires taking into account numerous forcings, while climate sensitivities of general circulation models are defined as the equilibrium surface warming due to a doubling of atmospheric CO2 concentration. A number of simulations with the Massachusetts Institute of Technology (MIT) climate model of intermediate complexity with different forcings have been carried out to study to what extent sensitivity to changes in CO2 concentration (SCO2) represent sensitivities to other forcings. The MIT model, similar to other models, shows a strong dependency of the simulated surface warming on the vertical structure of the imposed forcing. This dependency is a result of “semidirect” effects in the simulations with localized tropospheric heating. A method for estimating semidirect effects associated with different feedback mechanisms is presented. It is shown that forcing that includes these effects is a better measure of expected surface warming than a forcing that accounts for stratospheric adjustment only. Simulations with the versions of the MIT model with different strengths of cloud feedback show that, for the range of sensitivities produced by existing GCMs, SCO2 provides a good measure of the model sensitivity to other forcings. In the case of strong cloud feedback, sensitivity to the increase in CO2 concentration overestimates model sensitivity to both negative forcings, leading to the cooling of the surface and “black carbon”–like forcings with elevated heating. This is explained by the cloud feedback being less efficient in the case of increasing sea ice extent and snow cover or by the above-mentioned semidirect effects, which are absent in the CO2 simulations, respectively.
    Print ISSN: 0894-8755
    Electronic ISSN: 1520-0442
    Topics: Geography , Geosciences , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 7
    Publication Date: 2008-08-01
    Description: The impact of carbon–nitrogen dynamics in terrestrial ecosystems on the interaction between the carbon cycle and climate is studied using an earth system model of intermediate complexity, the MIT Integrated Global Systems Model (IGSM). Numerical simulations were carried out with two versions of the IGSM’s Terrestrial Ecosystems Model, one with and one without carbon–nitrogen dynamics. Simulations show that consideration of carbon–nitrogen interactions not only limits the effect of CO2 fertilization but also changes the sign of the feedback between the climate and terrestrial carbon cycle. In the absence of carbon–nitrogen interactions, surface warming significantly reduces carbon sequestration in both vegetation and soil by increasing respiration and decomposition (a positive feedback). If plant carbon uptake, however, is assumed to be nitrogen limited, an increase in decomposition leads to an increase in nitrogen availability stimulating plant growth. The resulting increase in carbon uptake by vegetation exceeds carbon loss from the soil, leading to enhanced carbon sequestration (a negative feedback). Under very strong surface warming, however, terrestrial ecosystems become a carbon source whether or not carbon–nitrogen interactions are considered. Overall, for small or moderate increases in surface temperatures, consideration of carbon–nitrogen interactions result in a larger increase in atmospheric CO2 concentration in the simulations with prescribed carbon emissions. This suggests that models that ignore terrestrial carbon–nitrogen dynamics will underestimate reductions in carbon emissions required to achieve atmospheric CO2 stabilization at a given level. At the same time, compensation between climate-related changes in the terrestrial and oceanic carbon uptakes significantly reduces uncertainty in projected CO2 concentration.
    Print ISSN: 0894-8755
    Electronic ISSN: 1520-0442
    Topics: Geography , Geosciences , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 8
    Publication Date: 2012-04-09
    Description: Conducting probabilistic climate projections with a particular climate model requires the ability to vary the model’s characteristics, such as its climate sensitivity. In this study, the authors implement and validate a method to change the climate sensitivity of the National Center for Atmospheric Research (NCAR) Community Atmosphere Model, version 3 (CAM3), through cloud radiative adjustment. Results show that the cloud radiative adjustment method does not lead to physically unrealistic changes in the model’s response to an external forcing, such as doubling CO2 concentrations or increasing sulfate aerosol concentrations. Furthermore, this method has some advantages compared to the traditional perturbed physics approach. In particular, the cloud radiative adjustment method can produce any value of climate sensitivity within the wide range of uncertainty based on the observed twentieth century climate change. As a consequence, this method allows Monte Carlo–type probabilistic climate forecasts to be conducted where values of uncertain parameters not only cover the whole uncertainty range, but cover it homogeneously. Unlike the perturbed physics approach that can produce several versions of a model with the same climate sensitivity but with very different regional patterns of change, the cloud radiative adjustment method can only produce one version of the model with a specific climate sensitivity. As such, a limitation of this method is that it cannot cover the full uncertainty in regional patterns of climate change.
    Print ISSN: 0894-8755
    Electronic ISSN: 1520-0442
    Topics: Geography , Geosciences , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 9
    Publication Date: 2018-03-29
    Description: For over twenty years, the Massachusetts Institute of Technology Earth System Model (MESM) has been used extensively for climate change research. The model is under continuous development with components being added or updated. To provide transparency in the model development, we perform a baseline evaluation of the newest version by comparing model behavior and properties to the previous model version. In particular, the impacts resulting from updates to the land surface model component and the input forcings used in historical simulations of climate change are investigated. We run an 1800-member ensemble of MESM historical climate simulations where the model parameters that set climate sensitivity, ocean heat uptake, and the net anthropogenic aerosol forcing are systematically varied. By comparing model output to observed patterns of surface temperature changes, the linear trend in the increase in ocean heat content, and upper-air temperature changes, we derive probability distributions for the three model parameters. Furthermore, we run a 372-member ensemble of transient climate simulations where model forcings are held fixed, absent an increase in carbon dioxide concentrations at the rate of 1\% per year. From these runs, we derive a response surface for transient climate response and thermosteric sea level rise as a function of climate sensitivity and ocean heat uptake. We compare the probability distributions and response surfaces derived using the current version of MESM to the preceding version to evaluate the impact of the updated land surface model and forcing suite. We show that the probability distributions shift towards higher climate sensitivities and weaker aerosol forcing in response to the new forcing suite. The climate response surfaces are relatively unchanged between model versions, indicating that the updated land surface model has limited impact on temperature evolution in the model.
    Print ISSN: 1991-9611
    Electronic ISSN: 1991-962X
    Topics: Geosciences
    Published by Copernicus on behalf of European Geosciences Union.
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 10
    Publication Date: 2018-08-21
    Description: For over 20 years, the Massachusetts Institute of Technology Earth System Model (MESM) has been used extensively for climate change research. The model is under continuous development with components being added and updated. To provide transparency in the model development, we perform a baseline evaluation by comparing model behavior and properties in the newest version to the previous model version. In particular, changes resulting from updates to the land surface model component and the input forcings used in historical simulations of climate change are investigated. We run an 1800-member ensemble of MESM historical climate simulations where the model parameters that set climate sensitivity, the rate of ocean heat uptake, and the net anthropogenic aerosol forcing are systematically varied. By comparing model output to observed patterns of surface temperature changes and the linear trend in the increase in ocean heat content, we derive probability distributions for the three model parameters. Furthermore, we run a 372-member ensemble of transient climate simulations where all model forcings are fixed and carbon dioxide concentrations are increased at the rate of 1 % year−1. From these runs, we derive response surfaces for transient climate response and thermosteric sea level rise as a function of climate sensitivity and ocean heat uptake. We show that the probability distributions shift towards higher climate sensitivities and weaker aerosol forcing when using the new model and that the climate response surfaces are relatively unchanged between model versions. Because the response surfaces are independent of the changes to the model forcings and similar between model versions with different land surface models, we suggest that the change in land surface model has limited impact on the temperature evolution in the model. Thus, we attribute the shifts in parameter estimates to the updated model forcings.
    Print ISSN: 1991-959X
    Electronic ISSN: 1991-9603
    Topics: Geosciences
    Published by Copernicus on behalf of European Geosciences Union.
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...