ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
Filter
  • Articles  (10)
  • Copernicus  (6)
  • American Institute of Physics (AIP)  (4)
Collection
  • Articles  (10)
Years
  • 1
    Electronic Resource
    Electronic Resource
    [S.l.] : American Institute of Physics (AIP)
    Review of Scientific Instruments 65 (1994), S. 1575-1579 
    ISSN: 1089-7623
    Source: AIP Digital Archive
    Topics: Physics , Electrical Engineering, Measurement and Control Technology
    Notes: Medium energy (100–300 keV) time-of-flight spectrometry for surface analysis uses the correlated detection of an energetic ion and the secondary electrons emitted as it passes through a carbon foil. When microchannel plates are employed in this detection scheme, a typical mean efficiency of detection of less than 30% is achieved. When instead a surface barrier detector is used to detect the ion, providing simultaneous acquisition of velocity and energy information, certain advantages are realized over the two microchannel plate configuration in the characterization of low level constituents of surfaces. Specifically, energy-discriminated gating of the start pulse was observed to nearly eliminate count rate dependent background in a time-of-flight spectrum. Further reduction in background was obtained by the selective elimination of forward recoil species or backscatters from the substrate. Replacement of the stop microchannel plate by a surface barrier detector has resulted in improved detection efficiency for He, as well as provided a means for further study of the processes which affect time-of-flight spectrometer response, including multiple scattering and secondary electron emission in the start foil. In this publication, we describe the application of this particle telescope to the backscattering analysis of gold on silicon and the forward scattering measurement of hydrogen in a self-supporting carbon film.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 2
    Electronic Resource
    Electronic Resource
    Woodbury, NY : American Institute of Physics (AIP)
    Applied Physics Letters 57 (1990), S. 1712-1714 
    ISSN: 1077-3118
    Source: AIP Digital Archive
    Topics: Physics
    Notes: Magnesium fluoride coatings ∼170 A(ring) thick have been evaporated onto mirror-quality Be substrates in ultrahigh vacuum and subsequently subjected to 250 keV α particle irradiation at room temperature. Analysis of the irradiated area by medium energy backscattering spectrometry revealed that the irradiation selectively removed fluorine with an initial yield of 2.2 fluorine atoms per incident α particle. A visible degradation in reflectivity, which became progressively more extensive with increasing dose, was observed after an α particle fluence of 1016 cm−2. After a total irradiation of 4×1017 cm−2 less than 20% of the fluorine in the film remained, effectively reducing it to metallic magnesium. The effect of this change on the reflectivity of the surface was catastrophic.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 3
    Electronic Resource
    Electronic Resource
    [S.l.] : American Institute of Physics (AIP)
    Review of Scientific Instruments 72 (2001), S. 3580-3586 
    ISSN: 1089-7623
    Source: AIP Digital Archive
    Topics: Physics , Electrical Engineering, Measurement and Control Technology
    Notes: An accurate algorithm is described for the computation of the theoretical values of the linear four-point probe thickness correction factors for point injection of current and insulating and conducting substrates. Three expressions are presented for the insulating substrate case that yield maximum fractional errors of 0.03%, 10−6, and 10−16, respectively. Additional expressions are presented for the case of a film on a conducting substrate and a critical comparison of the two cases is made. The theoretical basis of the algorithms, a Euler–Maclaurin expansion, is described. © 2001 American Institute of Physics.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 4
    Publication Date: 2015-08-13
    Description: Using a combination of continuous wave and time-resolved spectroscopy, we study the effects of interfacial conditions on the radiative lifetimes and photoluminescence intensities of sub-monolayer colloidal CdTe/CdS quantum dots (QDs) embedded in a three-dimensional porous silicon (PSi) scaffold. The PSi matrix was thermally oxidized under different conditions to change the interfacial oxide thickness. QDs embedded in a PSi matrix with ∼0.4 nm of interfacial oxide exhibited reduced photoluminescence intensity and nearly five times shorter radiative lifetimes (∼16 ns) compared to QDs immobilized within completely oxidized, porous silica (PSiO 2 ) frameworks (∼78 ns). The exponential dependence of QD lifetime on interfacial oxide thickness in the PSi scaffolds suggests charge transfer plays an important role in the exciton dynamics.
    Print ISSN: 0003-6951
    Electronic ISSN: 1077-3118
    Topics: Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 5
    Publication Date: 2016-03-29
    Description: One of the major challenges to assessing the impact of ocean acidification on marine life is the need to better understand the magnitude of long-term change in the context of natural variability. This study addresses this need through a global synthesis of monthly pH and aragonite saturation state (Ωarag) climatologies for 12 open ocean, coastal, and coral reef locations using 3-hourly moored observations of surface seawater partial pressure of CO2 and pH collected together since as early as 2010. Mooring observations suggest open ocean subtropical and subarctic sites experience present-day surface pH and Ωarag conditions outside the bounds of pre-industrial variability throughout most, if not all, of the year. In general, coastal mooring sites experience more natural variability and thus, more overlap with pre-industrial conditions; however, present day Ωarag conditions surpass biologically relevant thresholds associated with ocean acidification impacts on Mytilus californianus (Ωarag 〈 1.8) and Crassostrea gigas (Ωarag 〈 2.0) larvae in the California Current Ecosystem (CCE) and Mya arenaria larvae in the Gulf of Maine (Ωarag 〈 1.6). At the most variable mooring locations in coastal systems of the CCE, subseasonal conditions approached Ωarag = 1. Global and regional models and data syntheses of ship-based observations tended to underestimate seasonal variability compared to mooring observations. Efforts such as this to characterize all modes of pH and Ωarag variability and change at key locations are fundamental to assessing present-day biological impacts of ocean acidification, further improving experimental design to interrogate organism response under real-world conditions, and improving predictive models and vulnerability assessments seeking to quantify the broader impacts of ocean acidification.
    Print ISSN: 1810-6277
    Electronic ISSN: 1810-6285
    Topics: Biology , Geosciences
    Published by Copernicus on behalf of European Geosciences Union.
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 6
    Publication Date: 2018-01-31
    Description: The influence of mesoscale eddies on the flow field and the water masses, especially the oxygen distribution of the eastern tropical South Pacific is investigated from a mooring, float and satellite data set. Two anticyclonic (ACE1/2), one mode water (MWE) and one cyclonic eddy (CE) are identified and followed in detail with satellite data on their westward transition with velocities of 3.2 to 6.0 cm/s from their generation region, the shelf of the Peruvian and Chilean upwelling regime, across the Stratus Ocean Reference Station (ORS) (~ 20° S, 85° W) to their decaying region far west in the oligotrophic open ocean. The ORS is located in the transition zone between the oxygen minimum zone and the well-oxygenated South Pacific subtropical gyre. Velocity, hydrographic, and oxygen measurements at the mooring show the impact of eddies on the weak flow region of the eastern tropical South Pacific. Strong anomalies are related to the passage of eddies and are not associated to a seasonal signal in the open ocean. The mass transport of the four observed eddies across 85° W is between 1.1 and 1.8 Sv. The eddy type dependent available heat, salt and oxygen anomalies are 7.6 × 1018 J (ACE), 0.8 × 1018 J (MWE), −9.4 × 1018 J (CE) for heat, 23.9 × 1010 kg (ACE2), −3.6 × 1010 kg (MWE), −42.8 × 1010 kg (CE) for salt and −3.6 × 1016 μmol (ACE2), −3.5 × 1016 μmol (MWE), −6.5 × 1016 μmol (CE) for oxygen showing an imbalance between anticyclones and cyclones for heat and salt transports probably due to seasonal variability of water mass properties in the formation region of the eddies. Heat, salt and oxygen fluxes out of the coastal region across the ORS region in the oligotrophic open South Pacific are estimated based on these eddy anomalies and on eddy statistics (gained out of 23 years of satellite data). Furthermore, four profiling floats were trapped in the ACE2 during its westward propagation between the formation region and the open ocean, which allows conclusions on the isolation of water mass properties and the lateral mixing with time between the core of the eddy and the surrounding water showing the strongest lateral mixing between the seasonal thermocline and the eddy core during the first half of the lifetime.
    Print ISSN: 1812-0806
    Electronic ISSN: 1812-0822
    Topics: Geosciences
    Published by Copernicus on behalf of European Geosciences Union.
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 7
    Publication Date: 2016-09-13
    Description: One of the major challenges to assessing the impact of ocean acidification on marine life is detecting and interpreting long-term change in the context of natural variability. This study addresses this need through a global synthesis of monthly pH and aragonite saturation state (Ωarag) climatologies for 12 open ocean, coastal, and coral reef locations using 3-hourly moored observations of surface seawater partial pressure of CO2 and pH collected together since as early as 2010. Mooring observations suggest open ocean subtropical and subarctic sites experience present-day surface pH and Ωarag conditions outside the bounds of preindustrial variability throughout most, if not all, of the year. In general, coastal mooring sites experience more natural variability and thus, more overlap with preindustrial conditions; however, present-day Ωarag conditions surpass biologically relevant thresholds associated with ocean acidification impacts on Mytilus californianus (Ωarag 
    Print ISSN: 1726-4170
    Electronic ISSN: 1726-4189
    Topics: Biology , Geosciences
    Published by Copernicus on behalf of European Geosciences Union.
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 8
    Publication Date: 2018-10-04
    Description: Ship-based time series, some now approaching over three decades long, are critical climate records that have dramatically improved our ability to characterize natural and anthropogenic drivers of ocean carbon dioxide (CO2) uptake and biogeochemical processes. Advancements in autonomous marine carbon sensors and technologies over the last two decades have led to the expansion of observations at fixed time series sites, thereby improving the capability of characterizing sub-seasonal variability in the ocean. Here, we present a data product of 40 individual autonomous moored surface ocean pCO2 (partial pressure of CO2) time series established between 2004 and 2013, of which 17 also include autonomous pH measurements. These time series characterize a wide range of surface ocean carbonate conditions in different oceanic (17 sites), coastal (13 sites), and coral reef (10 sites) regimes. A time of trend emergence (ToE) methodology applied to the time series that exhibit well-constrained daily to interannual variability and an estimate of decadal variability indicates that the length of sustained observations necessary to detect statistically significant anthropogenic trends varies by marine environment. The ToE estimates for seawater pCO2 and pH range from 8 to 15 years at the open ocean sites, 16 to 41 years at the coastal sites, and 9 to 22 years at the coral reef sites. Only two open ocean pCO2 time series, Woods Hole Oceanographic Institution Hawaii Ocean Time-series Station (WHOTS) in the subtropical North Pacific and Stratus in the South Pacific gyre, have been deployed longer than the estimated time of trend emergence and, for these, deseasoned monthly means show estimated anthropogenic trends of 1.9 ± 0.3 µatm yr−1 and 1.6 ± 0.3 µatm yr−1, respectively. In the future, it is possible that updates to this product will allow for estimating anthropogenic trends at more sites; however, the product currently provides a valuable tool in an accessible format for evaluating climatology and natural variability of surface ocean carbonate chemistry in a variety of regions. Data are available at https://doi.org/10.7289/V5DB8043 and https://www.nodc.noaa.gov/ocads/oceans/Moorings/ndp097.html.
    Electronic ISSN: 1866-3591
    Topics: Geosciences
    Published by Copernicus
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 9
    Publication Date: 2018-07-31
    Description: The influence of mesoscale eddies on the flow field and the water masses, especially the oxygen distribution of the eastern tropical South Pacific, is investigated from a mooring, float, and satellite data set. Two anticyclonic (ACE1/2), one mode-water (MWE), and one cyclonic eddy (CE) are identified and followed in detail with satellite data on their westward transition with velocities of 3.2 to 6.0 cm s−1 from their generation region, the shelf of the Peruvian and Chilean upwelling regime, across the Stratus Ocean Reference Station (ORS; ∼20∘ S, 85∘ W) to their decaying region far west in the oligotrophic open ocean. The ORS is located in the transition zone between the oxygen minimum zone and the well oxygenated South Pacific subtropical gyre. Velocity, hydrographic, and oxygen measurements at the mooring show the impact of eddies on the weak flow region of the eastern tropical South Pacific. Strong anomalies are related to the passage of eddies and are not associated with a seasonal signal in the open ocean. The mass transport of the four observed eddies across 85∘ W is between 1.1 and 1.8 Sv. The eddy type-dependent available heat, salt, and oxygen anomalies are 8.1×1018 J (ACE2), 1.0×1018 J (MWE), and -8.9×1018 J (CE) for heat; 25.2×1010 kg (ACE2), -3.1×1010 kg (MWE), and -41.5×1010 kg (CE) for salt; and -3.6×1016 µmol (ACE2), -3.5×1016 µmol (MWE), and -6.5×1016 µmol (CE) for oxygen showing a strong imbalance between anticyclones and cyclones for salt transports probably due to seasonal variability in water mass properties in the formation region of the eddies. Heat, salt, and oxygen fluxes out of the coastal region across the ORS region in the oligotrophic open South Pacific are estimated based on these eddy anomalies and on eddy statistics (gained out of 23 years of satellite data). Furthermore, four profiling floats were trapped in the ACE2 during its westward propagation between the formation region and the open ocean, which allows for conclusions on lateral mixing of water mass properties with time between the core of the eddy and the surrounding water. The strongest lateral mixing was found between the seasonal thermocline and the eddy core during the first half of the eddy lifetime.
    Print ISSN: 1812-0784
    Electronic ISSN: 1812-0792
    Topics: Geosciences
    Published by Copernicus on behalf of European Geosciences Union.
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 10
    Publication Date: 2019-03-26
    Description: Ship-based time series, some now approaching over 3 decades long, are critical climate records that have dramatically improved our ability to characterize natural and anthropogenic drivers of ocean carbon dioxide (CO2) uptake and biogeochemical processes. Advancements in autonomous marine carbon sensors and technologies over the last 2 decades have led to the expansion of observations at fixed time series sites, thereby improving the capability of characterizing sub-seasonal variability in the ocean. Here, we present a data product of 40 individual autonomous moored surface ocean pCO2 (partial pressure of CO2) time series established between 2004 and 2013, 17 also include autonomous pH measurements. These time series characterize a wide range of surface ocean carbonate conditions in different oceanic (17 sites), coastal (13 sites), and coral reef (10 sites) regimes. A time of trend emergence (ToE) methodology applied to the time series that exhibit well-constrained daily to interannual variability and an estimate of decadal variability indicates that the length of sustained observations necessary to detect statistically significant anthropogenic trends varies by marine environment. The ToE estimates for seawater pCO2 and pH range from 8 to 15 years at the open ocean sites, 16 to 41 years at the coastal sites, and 9 to 22 years at the coral reef sites. Only two open ocean pCO2 time series, Woods Hole Oceanographic Institution Hawaii Ocean Time-series Station (WHOTS) in the subtropical North Pacific and Stratus in the South Pacific gyre, have been deployed longer than the estimated trend detection time and, for these, deseasoned monthly means show estimated anthropogenic trends of 1.9±0.3 and 1.6±0.3 µatm yr−1, respectively. In the future, it is possible that updates to this product will allow for the estimation of anthropogenic trends at more sites; however, the product currently provides a valuable tool in an accessible format for evaluating climatology and natural variability of surface ocean carbonate chemistry in a variety of regions. Data are available at https://doi.org/10.7289/V5DB8043 and https://www.nodc.noaa.gov/ocads/oceans/Moorings/ndp097.html (Sutton et al., 2018).
    Print ISSN: 1866-3508
    Electronic ISSN: 1866-3516
    Topics: Geosciences
    Published by Copernicus
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...