ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
Filter
  • Articles  (22)
  • 04. Solid Earth::04.08. Volcanology::04.08.06. Volcano monitoring  (22)
  • American Geophysical Union  (22)
Collection
  • Articles  (22)
Source
Years
  • 11
    Publication Date: 2017-04-04
    Description: Ground-based measurements of volcanic sulfur dioxide fluxes are important indicators of volcanic activity, with application in hazard assessment, and understanding the impacts of volcanic emissions upon the environment and climate. These data are obtained by making traverses underneath the volcanic plume a few kilometers from source with an ultraviolet spectrometer, measuring integrated SO2 concentrations across the plume’s cross section, and multiplying by the plume’s transport speed. However, plume velocities are usually derived from ground-based anemometers, located many kilometers from the traverse route and hundreds of meters below plume altitude, complicating the experimental design and introducing large flux (can be 〉100%) errors. Here we present the first report of a single instrument capable of (accurate) volcanic SO2 flux measurements. This device records integrated SO2 concentrations and plume heights during traverses. Between traverses, two in-plume SO2 time series are measured from underneath the plume with the instrument, corresponding to zenith and inclined (user-specified angle from vertical in the direction of the volcano) fields of view, respectively. The distance between the points of intersection of the two views with the plume is found on the basis of the determined plume height, and the two signals are cross-correlated to determine the lag between them, enabling accurate derivation of the wind speed. We present flux data (with errors ±12%) obtained in this way at Mt. Etna during July 2004.
    Description: Published
    Description: Q02003
    Description: partially_open
    Keywords: DOAS ; volcanic SO2 emissions. ; 01. Atmosphere::01.01. Atmosphere::01.01.07. Volcanic effects ; 04. Solid Earth::04.08. Volcanology::04.08.01. Gases ; 04. Solid Earth::04.08. Volcanology::04.08.06. Volcano monitoring ; 04. Solid Earth::04.08. Volcanology::04.08.07. Instruments and techniques ; 04. Solid Earth::04.08. Volcanology::04.08.08. Volcanic risk
    Repository Name: Istituto Nazionale di Geofisica e Vulcanologia (INGV)
    Type: article
    Format: 503 bytes
    Format: 185006 bytes
    Format: text/html
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 12
    Publication Date: 2017-04-04
    Description: Every month, small-scale explosive volcanic eruptions inject more than a million cubic meters of ash into Earth’s atmosphere [Simkin and Siebert, 2000]. Of all the troubles caused by this relatively mild volcanic activity, ashfall is by far the longest-reaching one, mantling the volcano slopes and surroundings with a slippery, heavy, unhealthy, and snow-like but Sun-resistant cover. Volcanic ash is composed of pyroclasts (fragments generated and emplaced by explosive eruptions) smaller than 2 millimeters, which are easily transported by wind and have a high surface-to-volume ratio. These same features, however, also allow safe collection of the ash away from the volcano. Such pyroclasts bear the signature of the fragmentation and dispersal processes they have experienced during eruption and transport. Thus, volcanic ash provides sample material well suited for studying quasi time correlated eruption dynamics [Taddeucci et al., 2002]. Here we illustrate how current research projects funded by the Italian Department for Civil Protection combine new sampling, analytical, and experimental techniques to maximize the extraction of useful information from basaltic volcanic ash.
    Description: Published
    Description: 253–260
    Description: 1.5. TTC - Sorveglianza dell'attività eruttiva dei vulcani
    Description: N/A or not JCR
    Description: reserved
    Keywords: Volcanic ; ash ; 04. Solid Earth::04.08. Volcanology::04.08.06. Volcano monitoring
    Repository Name: Istituto Nazionale di Geofisica e Vulcanologia (INGV)
    Type: article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 13
    Publication Date: 2017-04-04
    Description: Accepted for publication in Journal of Geophysical Research. Copyright (2009) American Geophysical Union. Further reproduction or electronic distribution is not permitted.
    Description: Using thermal infrared images recorded by a permanent thermal camera network maintained on Stromboli volcano (Italy), together with satellite and helicopter-based thermal image surveys, we have compiled a chronology of the events and processes occurring before and during Stromboli’s 2007 effusive eruption. These digital data also allow us to calculate the effusion rates and lava volumes erupted during the effusive episode. At the onset of the 2007 eruption, two parallel eruptive fissures developed within the North East crater, eventually breaching the NE flank of the summit cone and extending along the eastern margin of the Sciara del Fuoco. These fed a main effusive vent at 400 m a.s.l. to feed lava flows that extended to the sea. The effusive eruption was punctuated, on 15 March, by a paroxysm with features similar to the 5 April paroxysm that occurred during the 2002-03 effusive eruption. A total of between 3.2 x 106 m3 and 11 x 106 m3 of lava was erupted during the 2007 eruption over 34 days of effusive activity. More than half of this volume was emplaced during the first 5.5 days of the eruption. Although the 2007 effusive eruption had a comparable erupted volume to the previous (2002-03) effusive eruption, it had a shorter duration and thus a mean output rate (= total volume divided by eruption duration) that was one order of magnitude greater than the 2002-03 event (~2.4 m3 s-1 compared with 0.32±0.28 m3 s-1). In this paper, we discuss similarities and differences between these two effusive events, and interpret the processes occurring in 2007 in terms of the recent dynamics witnessed at Stromboli.
    Description: This paper was partially supported by a grant to S. Calvari (Project INGV-DPC Paroxysm V2/03, 2008-2010) funded by the Istituto Nazionale di Geofisica e Vulcanologia and by the Italian Civil Protection. Satellite-based effusion rate work by A. Steffke and A. Harris was supported by NASA grant NNG04GO64G "New Tools for Advanced Hot Spot Tracking".
    Description: In press
    Description: 1.5. TTC - Sorveglianza dell'attività eruttiva dei vulcani
    Description: JCR Journal
    Description: open
    Keywords: Thermal mapping ; Stromboli ; 04. Solid Earth::04.08. Volcanology::04.08.06. Volcano monitoring
    Repository Name: Istituto Nazionale di Geofisica e Vulcanologia (INGV)
    Type: article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 14
    Publication Date: 2012-02-03
    Description: An edited version of this paper was published by AGU. Copyright (2010) American Geophysical Union.
    Description: Volcano deformation may occur under different conditions. To understand how a volcano deforms, as well as relations with magmatic activity, we studied Mt. Etna in detail using interferometric synthetic aperture radar (InSAR) data from 1994 to 2008. From 1994 to 2000, the volcano inflated with a linear behavior. The inflation was accompanied by eastward and westward slip on the eastern and western flanks, respectively. The portions proximal to the summit showed higher inflation rates, whereas the distal portions showed several sectors bounded by faults, in some cases behaving as rigid blocks. From 2000 to 2003, the deformation became nonlinear, especially on the proximal eastern and western flanks, showing marked eastward and westward displacements, respectively. This behavior resulted from the deformation induced by the emplacement of feeder dikes during the 2001 and 2002–2003 eruptions. From 2003 to 2008, the deformation approached linearity again, even though the overall pattern continued to be influenced by the emplacement of the dikes from 2001 to 2002. The eastward velocity on the eastern flank showed a marked asymmetry between the faster sectors to the north and those (largely inactive) to the south. In addition, from 1994 to 2008 part of the volcano base (south, west, and north lower slopes) experienced a consistent trend of uplift on the order of ∼0.5 cm/yr. This study reveals that the flanks of Etna have undergone a complex instability resulting from three main processes. In the long term (103–104 years), the load of the volcano is responsible for the development of a peripheral bulge. In the intermediate term (≤101 years, observed from 1994 to 2000), inflation due to the accumulation of magma induces a moderate and linear uplift and outward slip of the flanks. In the short term (≤1 year, observed from 2001 to 2002), the emplacement of feeder dikes along the NE and south rifts results in a nonlinear, focused, and asymmetric deformation on the eastern and western flanks. Deformation due to flank instability is widespread at Mt. Etna, regardless of volcanic activity, and remains by far the predominant type of deformation on the volcano.
    Description: ESA provided the SAR data (Cat‐1 no. 4532 and GEO Supersite initiative). The DEM was obtained from the SRTM archive, while the ERS‐1/2 orbits are courtesy of the TU‐Delft, The Netherlands. This work was partially funded by INGV and the Italian DPC (DPCINGV project V4 “Flank”), the Italian DPC (under special agreement with IREA‐CNR), and the Italian Space Agency under contract “sistema rischio vulcanico (SRV).” The authors thank Francesco Casu, Paolo Berardino, and Riccardo Lanari for their support and Geoff Wadge and Michael Poland for their helpful and constructive review of the manuscript.
    Description: Published
    Description: B10405
    Description: 1.3. TTC - Sorveglianza geodetica delle aree vulcaniche attive
    Description: 1.5. TTC - Sorveglianza dell'attività eruttiva dei vulcani
    Description: 1.10. TTC - Telerilevamento
    Description: 3.2. Tettonica attiva
    Description: 3.5. Geologia e storia dei vulcani ed evoluzione dei magmi
    Description: 3.6. Fisica del vulcanismo
    Description: 4.3. TTC - Scenari di pericolosità vulcanica
    Description: JCR Journal
    Description: reserved
    Keywords: Flank instability ; InSAR ; volcanoes ; Etna ; 04. Solid Earth::04.01. Earth Interior::04.01.99. General or miscellaneous ; 04. Solid Earth::04.01. Earth Interior::04.01.02. Geological and geophysical evidences of deep processes ; 04. Solid Earth::04.02. Exploration geophysics::04.02.99. General or miscellaneous ; 04. Solid Earth::04.03. Geodesy::04.03.99. General or miscellaneous ; 04. Solid Earth::04.03. Geodesy::04.03.06. Measurements and monitoring ; 04. Solid Earth::04.03. Geodesy::04.03.07. Satellite geodesy ; 04. Solid Earth::04.04. Geology::04.04.99. General or miscellaneous ; 04. Solid Earth::04.04. Geology::04.04.06. Rheology, friction, and structure of fault zones ; 04. Solid Earth::04.04. Geology::04.04.09. Structural geology ; 04. Solid Earth::04.07. Tectonophysics::04.07.99. General or miscellaneous ; 04. Solid Earth::04.07. Tectonophysics::04.07.02. Geodynamics ; 04. Solid Earth::04.07. Tectonophysics::04.07.05. Stress ; 04. Solid Earth::04.07. Tectonophysics::04.07.07. Tectonics ; 04. Solid Earth::04.08. Volcanology::04.08.99. General or miscellaneous ; 04. Solid Earth::04.08. Volcanology::04.08.03. Magmas ; 04. Solid Earth::04.08. Volcanology::04.08.06. Volcano monitoring ; 04. Solid Earth::04.08. Volcanology::04.08.08. Volcanic risk ; 05. General::05.02. Data dissemination::05.02.03. Volcanic eruptions ; 05. General::05.04. Instrumentation and techniques of general interest::05.04.99. General or miscellaneous ; 05. General::05.08. Risk::05.08.99. General or miscellaneous
    Repository Name: Istituto Nazionale di Geofisica e Vulcanologia (INGV)
    Type: article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 15
    Publication Date: 2017-04-04
    Description: Volcanic rift zones, characterized by repeated dike emplacements, are expected to delimit the upper portion of unstable flanks at basaltic edifices. We use nearly two decades of InSAR observations excluding wintertime acquisitions, to analyze the relationships between rift zones, dike emplacement and flank instability at Etna. The results highlight a general eastward shift of the volcano summit, including the northeast and south rifts. This steadystate eastward movement (1-2 cm/yr) is interrupted or even reversed during transient dike injections. Detailed analysis of the northeast rift shows that only during phases of dike injection, as in 2002, does the rift transiently becomes the upper border of the unstable flank. The flank's steady-state eastward movement is inferred to result from the interplay between magmatic activity, asymmetric topographic unbuttressing, and east-dipping detachment geometry at its base. This study documents the first evidence of steady-state volcano rift instability interrupted by transient dike injection at basaltic edifices.
    Description: Partially funded by INGV and the Italian DPC (DPC-INGV project V4 “Flank”). ERS and ENVISAT SAR data were provided by ESA through the Cat-1 project no. 4532 and the GEO Supersite initiative. The DEM was obtained from the SRTM archive. ERS-1/2 orbits are courtesy of the TU-Delft, The Netherlands. SAR data processing has been done at IREACNR, partially carried out under contract “Volcanic Risk System (SRV)” funded by the Italian Space Agency (ASI).
    Description: Published
    Description: L20311
    Description: 1.3. TTC - Sorveglianza geodetica delle aree vulcaniche attive
    Description: 1.5. TTC - Sorveglianza dell'attività eruttiva dei vulcani
    Description: 1.10. TTC - Telerilevamento
    Description: 3.2. Tettonica attiva
    Description: 3.5. Geologia e storia dei vulcani ed evoluzione dei magmi
    Description: 3.6. Fisica del vulcanismo
    Description: 4.3. TTC - Scenari di pericolosità vulcanica
    Description: JCR Journal
    Description: restricted
    Keywords: flank instability ; rift zones ; 04. Solid Earth::04.03. Geodesy::04.03.99. General or miscellaneous ; 04. Solid Earth::04.03. Geodesy::04.03.01. Crustal deformations ; 04. Solid Earth::04.03. Geodesy::04.03.06. Measurements and monitoring ; 04. Solid Earth::04.03. Geodesy::04.03.07. Satellite geodesy ; 04. Solid Earth::04.03. Geodesy::04.03.09. Instruments and techniques ; 04. Solid Earth::04.04. Geology::04.04.99. General or miscellaneous ; 04. Solid Earth::04.04. Geology::04.04.06. Rheology, friction, and structure of fault zones ; 04. Solid Earth::04.04. Geology::04.04.09. Structural geology ; 04. Solid Earth::04.07. Tectonophysics::04.07.99. General or miscellaneous ; 04. Solid Earth::04.07. Tectonophysics::04.07.02. Geodynamics ; 04. Solid Earth::04.07. Tectonophysics::04.07.05. Stress ; 04. Solid Earth::04.07. Tectonophysics::04.07.07. Tectonics ; 04. Solid Earth::04.08. Volcanology::04.08.99. General or miscellaneous ; 04. Solid Earth::04.08. Volcanology::04.08.06. Volcano monitoring ; 04. Solid Earth::04.08. Volcanology::04.08.07. Instruments and techniques ; 04. Solid Earth::04.08. Volcanology::04.08.08. Volcanic risk ; 05. General::05.08. Risk::05.08.99. General or miscellaneous
    Repository Name: Istituto Nazionale di Geofisica e Vulcanologia (INGV)
    Type: article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 16
    Publication Date: 2020-02-24
    Description: On 28 December 2002, an effusive flank eruption started at Stromboli volcano (Aeolian Islands, 15 Italy). This lasted until 22 July 2003 and produced two lava flow fields that were emplaced onto the 16 steep slopes of Sciara del Fuoco. The first flow field was fed by a vent that opened at 500 m 17 elevation and was active between 30 December 2002 and 15 February 2003. The second was 18 supplied by a vent at 670 m and was emplaced mainly between 15 February and 22 July 2003. Here 19 we review the lava flow field emplacement based on daily thermal and visual surveys. The variable 20 slopes on which the lava flowed yielded an uncommon flow field morphology. This resulted in a 21 lava shield in the proximal area where flow stacking and inflation caused piling up of lava due to the 22 relatively flat ground. The proximal area was characterized by a complex network of tumuli and 23 tube-fed flows associated. The medial-distal lava flow field was emplaced on an extremely steep 24 zone. This area showed persistent flow front crumbling, producing a debris field on which emplaced 25 lava flows formed lava channels with excavated debris levées. This eruption provided an exceptional 26 opportunity to examine the evolution of lava flow fields emplaced on steep slopes, and proved the 27 usefulness of thermal imagers for safe and efficient monitoring of the active lava flows. In addition, thermal monitoring allowed calculation of quantitative parameters, such as effusion rate, allowing constraint of the time varying nature of supply to this eruption.
    Description: Published
    Description: 1.5. TTC - Sorveglianza dell'attività eruttiva dei vulcani
    Description: open
    Keywords: thermal imaging ; stromboli ; 04. Solid Earth::04.08. Volcanology::04.08.06. Volcano monitoring
    Repository Name: Istituto Nazionale di Geofisica e Vulcanologia (INGV)
    Type: book chapter
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 17
    Publication Date: 2017-04-04
    Description: From December 2005 to January 2006, an anomalous degassing episode was observed at Mount Etna, well-correlated with an increase in volcanic tremor, and in the almost complete absence of eruptive activity. In the same period, more than 10,000 very long period (VLP) events were detected. Through moment tensor inversion analyses of the VLP pulses, we obtained quantitative estimates of the volumetric variations associated with these events. This allowed a quantitative investigation of the relationship between VLP seismic activity, volcanic tremor, and gas emission rate at Mount Etna. We found a statistically significant positive correlation between SO2 gas flux and volcanic tremor, suggesting that tremor amplitude can be used as a first-order proxy for the background degassing activity of the volcano. VLP volumetric changes and SO2 gas flux are correlated only for the last part of our observations, following a slight change in the VLP source depth. We calculate that the gas associated with VLP signal genesis contributed less than 5% of the total gas emission. The existence of a linear correlation between VLP and degassing activities indicates a general relationship between these two processes. The effectiveness of such coupling appears to depend upon the particular location of the VLP source, suggesting that conduit geometry might play a significant role in the VLP-generating process. These results are the first report on Mount Etna of a quantitative relationship between the amounts of gas emissions directly estimated through instrumental flux measurements and the quantities of gas mass inferred in the VLP source inversion.
    Description: Published
    Description: 4910-4921
    Description: 2V. Dinamiche di unrest e scenari pre-eruttivi
    Description: JCR Journal
    Description: restricted
    Keywords: Very Long Period seismicity ; UV scanners network ; Etna Volcano ; volcano monitoring ; 04. Solid Earth::04.02. Exploration geophysics::04.02.06. Seismic methods ; 04. Solid Earth::04.06. Seismology::04.06.03. Earthquake source and dynamics ; 04. Solid Earth::04.06. Seismology::04.06.08. Volcano seismology ; 04. Solid Earth::04.08. Volcanology::04.08.06. Volcano monitoring
    Repository Name: Istituto Nazionale di Geofisica e Vulcanologia (INGV)
    Type: article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 18
    Publication Date: 2017-04-04
    Description: An array of nine three-component broadband seismometers was deployed in two different configurations on Stromboli volcano. The analysis of the seismic wavefield related to volcanic explosions revealed some observations which offer a completely new insight into the internal dynamics of a volcano. These new observations are restricted to the low-frequency range below 1 Hz and underline, therefore, the superiority of broadband recordings over conventional short-period observations. Surprisingly simple wavelets indicate an initially contracting source mechanism. Gas-jets that could not be seen in a short-period seismic record at all, generate a clear dilatational wavelet in a broadband recording suggesting the same contracting source mechanism. The analysis of particle motion and seismic array techniques permits a location of the seismic source. We find low-frequency signals of 3s and 6s period that are not related to eruptions and do not share a common source with the eruption-related events. A video recording of visible volcanic activity at the crater region allows one to correlate precisely eruptive features with seismic signals.
    Description: Published
    Description: 749-752
    Description: 5V. Sorveglianza vulcanica ed emergenze
    Description: N/A or not JCR
    Description: restricted
    Keywords: Stromboli ; volcano seismology ; 04. Solid Earth::04.08. Volcanology::04.08.06. Volcano monitoring
    Repository Name: Istituto Nazionale di Geofisica e Vulcanologia (INGV)
    Type: article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 19
    Publication Date: 2017-04-04
    Description: We present the results of laboratory experiments on the aggregation and disaggregation of colliding volcanic ash particles. Ash particles of different composition and size 〈90 µm were held in turbulent suspension and filmed in high speed while colliding, aggregating, and disaggregating, forming a growing layer of electrostatically bound particles along a vertical plate. At room conditions and regardless of composition, 60–80% of the colliding particles smaller than 32 µm remained aggregated. In contrast, aggregation of particles larger than 63 µm was negligible, and, when a layer formed, periods when disaggregation (mainly by collisions or drag) exceeded aggregation occurred twice as frequently than for smaller particles. An empirical relationship linking the aggregation index, i.e., the effective fraction of aggregated particles surviving disaggregation, to the mean particle collision kinetic energy is provided. Our results have potential implications on the dynamics of volcanic plumes and ash mobility in the environment.
    Description: INGV-DPC project V1 “Probabilistic evaluation of volcanic hazard”; EU Seventh Programme FP7 “MED-SUV” grant agreement 308665
    Description: Published
    Description: 1068–1075
    Description: 3V. Dinamiche e scenari eruttivi
    Description: 2IT. Laboratori sperimentali e analitici
    Description: JCR Journal
    Description: restricted
    Keywords: volcanic ash ; disaggregation ; experimental modeling ; volcanic plumes ; aggregation processes ; colliding particles ; sticking rate ; 01. Atmosphere::01.01. Atmosphere::01.01.07. Volcanic effects ; 04. Solid Earth::04.08. Volcanology::04.08.02. Experimental volcanism ; 04. Solid Earth::04.08. Volcanology::04.08.06. Volcano monitoring ; 05. General::05.02. Data dissemination::05.02.03. Volcanic eruptions
    Repository Name: Istituto Nazionale di Geofisica e Vulcanologia (INGV)
    Type: article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 20
    Publication Date: 2017-04-04
    Description: Flank instability is common at volcanoes, even though the subsurface structures, including the depth to a detachment fault, remain poorly constrained. Here, we use a multidisciplinary approach, applicable to most volcanoes, to evaluate the detachment depth of the unstable NE flank of Mt. Etna. InSAR observations of Mount Etna during 1995–2008 show a trapdoor subsidence of the upper NE flank, with a maximum deformation against the NE Rift. The trapdoor tilt was highest in magnitude in 2002–2004, contemporaneous with the maximum rates of eastward slip along the east flank. We explain this deformation as due to a general eastward displacement of the flank, activating a rotational detachment and forming a rollover anticline, the head of which is against the NE Rift. Established 2D rollover construction models, constrained by morphological and structural data, suggest that the east‐dipping detachment below the upper NE flank lies at around 4 km below the surface. This depth is consistent with seismicity that clusters above 2–3 km below sea level. Therefore, the episodically unstable NE flank lies above an east‐dipping rotational detachment confined by the NE Rift and Pernicana Fault. Our approach, which combines short‐term (InSAR) and long‐term (geological) observations, constrains the 3D geometry and kinematics of part of the unstable flank of Etna and may be applicable and effective to understand the deeper structure of volcanoes undergoing flank instability or unrest.
    Description: This work was partially funded by INGV and the DPC‐INGV project “Flank”, and partially by the ASI (SRV project).
    Description: Published
    Description: L16304
    Description: 1.3. TTC - Sorveglianza geodetica delle aree vulcaniche attive
    Description: 1.5. TTC - Sorveglianza dell'attività eruttiva dei vulcani
    Description: 1.10. TTC - Telerilevamento
    Description: 3.2. Tettonica attiva
    Description: 4.3. TTC - Scenari di pericolosità vulcanica
    Description: JCR Journal
    Description: reserved
    Keywords: flank instability ; fault ; InSAR ; Etna ; rollover ; 04. Solid Earth::04.01. Earth Interior::04.01.99. General or miscellaneous ; 04. Solid Earth::04.02. Exploration geophysics::04.02.99. General or miscellaneous ; 04. Solid Earth::04.03. Geodesy::04.03.99. General or miscellaneous ; 04. Solid Earth::04.03. Geodesy::04.03.06. Measurements and monitoring ; 04. Solid Earth::04.03. Geodesy::04.03.07. Satellite geodesy ; 04. Solid Earth::04.04. Geology::04.04.99. General or miscellaneous ; 04. Solid Earth::04.04. Geology::04.04.06. Rheology, friction, and structure of fault zones ; 04. Solid Earth::04.04. Geology::04.04.09. Structural geology ; 04. Solid Earth::04.04. Geology::04.04.11. Instruments and techniques ; 04. Solid Earth::04.06. Seismology::04.06.99. General or miscellaneous ; 04. Solid Earth::04.07. Tectonophysics::04.07.99. General or miscellaneous ; 04. Solid Earth::04.07. Tectonophysics::04.07.02. Geodynamics ; 04. Solid Earth::04.07. Tectonophysics::04.07.05. Stress ; 04. Solid Earth::04.07. Tectonophysics::04.07.07. Tectonics ; 04. Solid Earth::04.08. Volcanology::04.08.99. General or miscellaneous ; 04. Solid Earth::04.08. Volcanology::04.08.06. Volcano monitoring ; 04. Solid Earth::04.08. Volcanology::04.08.07. Instruments and techniques ; 04. Solid Earth::04.08. Volcanology::04.08.08. Volcanic risk ; 05. General::05.08. Risk::05.08.99. General or miscellaneous
    Repository Name: Istituto Nazionale di Geofisica e Vulcanologia (INGV)
    Type: article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...