ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
Filter
  • Wiley  (35)
  • American Geophysical Union  (14)
  • Springer Nature  (14)
  • Copernicus  (7)
  • National Academy of Sciences  (4)
  • Molecular Diversity Preservation International  (3)
  • Oceanography Society  (3)
  • 1
    Publication Date: 2022-05-25
    Description: Author Posting. © American Geophysical Union, 2006. This article is posted here by permission of American Geophysical Union for personal use, not for redistribution. The definitive version was published in Geochemistry Geophysics Geosystems 7 (2006): Q06016, doi:10.1029/2005GC001109.
    Description: Near-bottom investigations of the cross section of the Atlantis Massif exposed in a major tectonic escarpment provide an unprecedented view of the internal structure of the footwall domain of this oceanic core complex. Integrated direct observations, sampling, photogeology, and imaging define a mylonitic, low-angle detachment shear zone (DSZ) along the crest of the massif. The shear zone may project beneath the nearby, corrugated upper surface of the massif. The DSZ and related structures are inferred to be responsible for the unroofing of upper mantle peridotites and lower crustal gabbroic rocks by extreme, localized tectonic extension during seafloor spreading over the past 2 m.y. The DSZ is characterized by strongly foliated to mylonitic serpentinites and talc-amphibole schists. It is about 100 m thick and can be traced continuously for at least 3 km in the tectonic transport direction. The DSZ foliation arches over the top of the massif in a convex-upward trajectory mimicking the morphology of the top of the massif. Kinematic indicators show consistent top-to-east (toward the MAR axis) tectonic transport directions. Foliated DSZ rocks grade structurally downward into more massive basement rocks that lack a pervasive outcrop-scale foliation. The DSZ and underlying basement rocks are cut by discrete, anastomosing, normal-slip, shear zones. Widely spaced, steeply dipping, normal faults cut all the older structures and localize serpentinization-driven hydrothermal outflow at the Lost City Hydrothermal Field. A thin (few meters) sequence of sedimentary breccias grading upward into pelagic limestones directly overlies the DSZ and may record a history of progressive rotation of the shear zone from a moderately dipping attitude into its present, gently dipping orientation during lateral spreading and uplift.
    Description: This work was supported by NSF grants OCE-9712430 and 0136816 to Karson and Kelley and Swiss SNF grant 2100-068055 to Früh-Green.
    Keywords: Detachment faults ; Faults ; Oceanic core complex ; Seafloor spreading ; Serpentinite ; Shear zones
    Repository Name: Woods Hole Open Access Server
    Type: Article
    Format: 14440784 bytes
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 2
    Publication Date: 2022-05-25
    Description: Author Posting. © Oceanography Society, 2007. This article is posted here by permission of Oceanography Society for personal use, not for redistribution. The definitive version was published in Oceanography 20, 4 (2007): 52-61.
    Description: Human-occupied submersibles, towed vehicles, and tethered remotely operated vehicles (ROVs) have traditionally been used to study the deep seafloor. In recent years, however, autonomous underwater vehicles (AUVs) have begun to replace these other vehicles for mapping and survey missions. AUVs complement the capabilities of these pre-existing systems, offering superior mapping capabilities, improved logistics, and better utilization of the surface support vessel by allowing other tasks such as submersible operations, ROV work, CTD stations, or multibeam surveys to be performed while the AUV does its work. AUVs are particularly well suited to systematic preplanned surveys using sonars, in situ chemical sensors, and cameras in the rugged deep-sea terrain that has been the focus of numerous scientific expeditions (e.g., those to mid-ocean ridges and ocean margin settings). The Autonomous Benthic Explorer (ABE) is an example of an AUV that has been used for over 20 cruises sponsored by the National Science Foundation (NSF), the National Oceanic and Atmospheric Administration (NOAA) Office of Ocean Exploration (OE), and international and private sources. This paper summarizes NOAA OE-sponsored cruises made to date using ABE.
    Repository Name: Woods Hole Open Access Server
    Type: Article
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 3
    Publication Date: 2022-05-25
    Description: Author Posting. © American Geophysical Union, 2007. This article is posted here by permission of American Geophysical Union for personal use, not for redistribution. The definitive version was published in Geochemistry Geophysics Geosystems 8 (2007): Q01006, doi:10.1029/2006GC001333.
    Description: Recent advances in underwater vehicle navigation and sonar technology now permit detailed mapping of complex seafloor bathymetry found at mid-ocean ridge crests. Imagenex 881 (675 kHz) scanning sonar data collected during low-altitude (~5 m) surveys conducted with DSV Alvin were used to produce submeter resolution bathymetric maps of five hydrothermal vent areas at the East Pacific Rise (EPR) Ridge2000 Integrated Study Site (9°50′N, “bull's-eye”). Data were collected during 29 dives in 2004 and 2005 and were merged through a grid rectification technique to create high-resolution (0.5 m grid) composite maps. These are the first submeter bathymetric maps generated with a scanning sonar mounted on Alvin. The composite maps can be used to quantify the dimensions of meter-scale volcanic and hydrothermal features within the EPR axial summit trough (AST) including hydrothermal vent structures, lava pillars, collapse areas, the trough walls, and primary volcanic fissures. Existing Autonomous Benthic Explorer (ABE) bathymetry data (675 kHz scanning sonar) collected at this site provide the broader geologic context necessary to interpret the meter-scale features resolved in the composite maps. The grid rectification technique we employed can be used to optimize vehicle time by permitting the creation of high-resolution bathymetry maps from data collected during multiple, coordinated, short-duration surveys after primary dive objectives are met. This method can also be used to colocate future near-bottom sonar data sets within the high-resolution composite maps, enabling quantification of bathymetric changes associated with active volcanic, hydrothermal and tectonic processes.
    Description: This work was supported by an NSF Ridge2000 fellowship to V.L.F. and a Woods Hole Oceanographic Institution fellowship supported by the W. Alan Clark Senior Scientist Chair (D.J.F.). Funding was also provided by the Censsis Engineering Research Center of the National Science Foundation under grant EEC-9986821. Support for field and laboratory studies was provided by the National Science Foundation under grants OCE-9819261 (D.J.F. and M.T.), OCE-0096468 (D.J.F. and T.S.), OCE-0328117 (SMC), OCE-0525863 (D.J.F. and S.A.S.), OCE-0112737 ATM-0427220 (L.L.W.), and OCE- 0327261 and OCE-0328117 (T.S.). Additional support was provided by The Edwin Link Foundation (J.C.K.).
    Keywords: High-resolution bathymetry ; Near-bottom sonar ; East Pacific Rise ; Ridge2000
    Repository Name: Woods Hole Open Access Server
    Type: Article
    Format: 5546372 bytes
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 4
    Publication Date: 2022-05-25
    Description: Author Posting. © Oceanography Society, 2007. This article is posted here by permission of Oceanography Society for personal use, not for redistribution. The definitive version was published in Oceanography 20, 1 (2007): 152-161.
    Description: Autonomous and remotely operated underwater vehicles play complementary roles in the discovery, exploration, and detailed study of hydrothermal vents. Beginning with clues provided by towed or lowered instruments, autonomous underwater vehicles (AUVs) can localize and make preliminary photographic surveys of vent fields. In addition to finding and photographing such sites, AUVs excel at providing regional context through fine-scale bathymetric and magnetic field mapping. Remotely operated vehicles (ROVs) enable close-up inspection, photomosaicking, and tasks involving manipulation of samples and instruments. Increasingly, ROVs are used to conduct in situ seafloor experiments. ROVs can also be used for fine-scale bathymetric mapping with excellent results, although AUVs are usually more efficient in such tasks.
    Repository Name: Woods Hole Open Access Server
    Type: Article
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 5
    Publication Date: 2022-05-27
    Description: © The Author(s), 2021. This article is distributed under the terms of the Creative Commons Attribution License. The definitive version was published in Dannreuther, N. M., Halpern, D., Rullkotter, J., & Yoerger, D. Technological developments since the Deepwater Horizon oil spill. Oceanography, 34(1), (2021): 192–211, https://doi.org/10.5670/oceanog.2021.126.
    Description: The Gulf of Mexico Research Initiative (GoMRI) funded research for 10 years following the Deepwater Horizon incident to address five themes, one of which was technology developments for improved response, mitigation, detection, characterization, and remediation associated with oil spills and gas releases. This paper features a sampling of such developments or advancements, most of which cite studies funded by GoMRI but also include several developments that occurred outside this program. We provide descriptions of technological developments, including new techniques or the novel application or enhancement of existing techniques, related to studies of the subsurface oil plume, the collection of data on ocean currents, and oil spill modeling. Also featured are developments related to interactions of oil with particulate matter and microbial organisms, analysis of biogeochemical processes affecting oil fate, human health risks from inhalation of oil spill chemicals, impacts on marine life, and alternative dispersant technologies to Corexit®. Many of the technological developments featured here have contributed to complementary or subsequent research and have applications beyond oil spill research that can contribute to a wide range of scientific endeavors.
    Description: This research was made possible by the Gulf of Mexico Research Initiative.
    Repository Name: Woods Hole Open Access Server
    Type: Article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 6
    Publication Date: 2022-05-26
    Description: Author Posting. © American Geophysical Union, 2010. This article is posted here by permission of American Geophysical Union for personal use, not for redistribution. The definitive version was published in Geophysical Research Letters 37 (2010): L18303, doi:10.1029/2010GL043542.
    Description: Inversion of near-bottom magnetic data reveals a well-defined low crustal magnetization zone (LMZ) near a local topographic high (37°47′S, 49°39′E) on the ultraslow-spreading Southwest Indian Ridge (SWIR). The magnetic data were collected by the autonomous underwater vehicle ABE on board R/V DaYangYiHao in February-March 2007. The first active hydrothermal vent field observed on the SWIR is located in Area A within and adjacent to the LMZ at the local topographic high, implying that this LMZ may be the result of hydrothermal alteration of magnetic minerals. The maximum reduction in crustal magnetization is 3 A/M. The spatial extent of the LMZ is estimated to be at least 6.7 × 104 m2, which is larger than that of the LMZs at the TAG vent field on the Mid-Atlantic Ridge (MAR), as well as the Relict Field, Bastille, Dante-Grotto, and New Field vent-sites on the Juan de Fuca Ridge (JdF). The calculated magnetic moment, i.e., the product of the spatial extent and amplitude of crustal magnetization reduction is at least −3 × 107 Am2 for the LMZ on the SWIR, while that for the TAG field on the MAR is −8 × 107 Am2 and that for the four individual vent fields on the JdF range from −5 × 107 to −3 × 107 Am2. Together these results indicate that crustal demagnetization is a common feature of basalt-hosted hydrothermal vent fields at mid-ocean ridges of all spreading rates. Furthermore, the crustal demagnetization of the Area A on the ultraslow-spreading SWIR is comparable in strength to that of the TAG area on the slow-spreading MAR.
    Description: This work was supported by NSF‐China and COMRA Projects 40676023 and DYXM‐115‐02‐03‐02 (JZ and YJC), the Charles D. Hollister Endowed Fund for Support of Innovative Research at WHOI (JL), and the ChEss Program of the Census of Marine Life (CRG).
    Keywords: Reduced magnetization zone ; Southwest Indian Ridge ; Hydrothermal vent
    Repository Name: Woods Hole Open Access Server
    Type: Article
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 7
    Publication Date: 2022-05-26
    Description: Author Posting. © American Geophysical Union, 2012. This article is posted here by permission of American Geophysical Union for personal use, not for redistribution. The definitive version was published in Journal of Geophysical Research 117 (2012): B10102, doi:10.1029/2012JB009349.
    Description: We describe and apply a new inversion method for 3-D modeling of magnetic anomalies designed for general application but which is particularly useful for the interpretation of near-seafloor magnetic anomalies. The crust subsurface is modeled by a set of prismatic cells, each with uniform magnetization, that together reproduce the observed magnetic field. This problem is linear with respect to the magnetization, and the number of cells is normally greater than the amount of available data. Thus, the solution is obtained by solving an under-determined linear problem. A focused solution, exhibiting sharp boundaries between different magnetization domains, is obtained by allowing the amplitudes of magnetization to vary between a pre-determined range and by minimizing the region of the 3-D space where the source shows large variations, i.e., large gradients. A regularization functional based on a depth-weighting function is also introduced in order to counter-act the natural decay of the magnetic field intensity with depth. The inversion method has been used to explore the characteristics of the submarine hydrothermal system of Brothers volcano in the Kermadec arc, by inverting near-bottom magnetic data acquired by Autonomous Underwater Vehicles (AUVs). Different surface expressions of the hydrothermal vent fields show specific vertical structures in their underlying demagnetization regions that we interpret to represent hydrothermal upflow zones. For example, at focused vent sites the demagnetized conduits are vertical, pipe-like structures extending to depths of ~1000 m below the seafloor, whereas at diffuse vent sites the demagnetization regions are characterized by thin and inclined conduits.
    Description: This contribution was made possible through funding by the New Zealand Foundation for Research, Science and Technology (FRST contract C05X0406) and by the Royal Society of New Zealand by the Marsden Fund (grant GNS1003).
    Description: 2013-04-11
    Keywords: AUV ; Brothers volcano ; Hydrothermal systems ; Magnetic data inversion
    Repository Name: Woods Hole Open Access Server
    Type: Article
    Format: text/plain
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 8
    Publication Date: 2016-05-23
    Description: People are regularly asked to report on their likelihoods of carrying out consequential future behaviors, including complying with medical advice, completing educational assignments, and voting in upcoming elections. Despite these stated self-predictions being notoriously unreliable, they are used to inform many strategic decisions. We report two studies examining stated self-prediction about whether citizens will vote. We find that most self-predicted voters do not actually vote despite saying they will, and that campaign callers can discern which self-predicted voters will not actually vote. In study 1 (n = 4,463), self-predicted voters rated by callers as “100% likely to vote” were 2 times more likely to actually vote than those rated unlikely to vote. Study 2 (n = 3,064) replicated this finding and further demonstrated that callers’ prediction accuracy was mediated by citizens’ nonverbal signals of uncertainty and deception. Strangers can use nonverbal signals to improve predictions of follow through on self-reported intentions—an insight of potential value for politics, medicine, and education.
    Print ISSN: 0027-8424
    Electronic ISSN: 1091-6490
    Topics: Biology , Medicine , Natural Sciences in General
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 9
    Publication Date: 2016-03-28
    Description: Across two field studies of romantic attraction, we demonstrate that postural expansiveness makes humans more romantically appealing. In a field study (n = 144 speed-dates), we coded nonverbal behaviors associated with liking, love, and dominance. Postural expansiveness—expanding the body in physical space—was most predictive of attraction, with each one-unit increase in coded behavior from the video recordings nearly doubling a person’s odds of getting a “yes” response from one’s speed-dating partner. In a subsequent field experiment (n = 3,000), we tested the causality of postural expansion (vs. contraction) on attraction using a popular Global Positioning System-based online-dating application. Mate-seekers rapidly flipped through photographs of potential sexual/date partners, selecting those they desired to meet for a date. Mate-seekers were significantly more likely to select partners displaying an expansive (vs. contractive) nonverbal posture. Mediation analyses demonstrate one plausible mechanism through which expansiveness is appealing: Expansiveness makes the dating candidate appear more dominant. In a dating world in which success sometimes is determined by a split-second decision rendered after a brief interaction or exposure to a static photograph, single persons have very little time to make a good impression. Our research suggests that a nonverbal dominance display increases a person’s chances of being selected as a potential mate.
    Print ISSN: 0027-8424
    Electronic ISSN: 1091-6490
    Topics: Biology , Medicine , Natural Sciences in General
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 10
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...