ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
Filter
  • Ocean circulation  (2)
  • American Geophysical Union  (2)
  • Blackwell Publishing Ltd
  • Springer Nature
  • 1
    Publication Date: 2022-05-25
    Description: Author Posting. © American Geophysical Union, 2007. This article is posted here by permission of American Geophysical Union for personal use, not for redistribution. The definitive version was published in Global Biogeochemical Cycles 21 (2007): GB3007, doi:10.1029/2006GB002857.
    Description: Results are presented of export production, dissolved organic matter (DOM) and dissolved oxygen simulated by 12 global ocean models participating in the second phase of the Ocean Carbon-cycle Model Intercomparison Project. A common, simple biogeochemical model is utilized in different coarse-resolution ocean circulation models. The model mean (±1σ) downward flux of organic matter across 75 m depth is 17 ± 6 Pg C yr−1. Model means of globally averaged particle export, the fraction of total export in dissolved form, surface semilabile dissolved organic carbon (DOC), and seasonal net outgassing (SNO) of oxygen are in good agreement with observation-based estimates, but particle export and surface DOC are too high in the tropics. There is a high sensitivity of the results to circulation, as evidenced by (1) the correlation of surface DOC and export with circulation metrics, including chlorofluorocarbon inventory and deep-ocean radiocarbon, (2) very large intermodel differences in Southern Ocean export, and (3) greater export production, fraction of export as DOM, and SNO in models with explicit mixed layer physics. However, deep-ocean oxygen, which varies widely among the models, is poorly correlated with other model indices. Cross-model means of several biogeochemical metrics show better agreement with observation-based estimates when restricted to those models that best simulate deep-ocean radiocarbon. Overall, the results emphasize the importance of physical processes in marine biogeochemical modeling and suggest that the development of circulation models can be accelerated by evaluating them with marine biogeochemical metrics.
    Description: R. G. N. and J. L. S. acknowledge the support of NASA grants NAG5-6451 and NAG5-6591, respectively, as part of the JGOFS Synthesis and Modeling Program. G. K. P. and F. J. acknowledge support by the Swiss National Science Foundation. European contributions were supported by the EU GOSAC Project (ENV4-CT97- 0495).
    Keywords: Export production ; Numerical modeling ; Ocean circulation
    Repository Name: Woods Hole Open Access Server
    Type: Article
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 2
    Publication Date: 2022-05-25
    Description: Author Posting. © American Geophysical Union, 2004. This article is posted here by permission of American Geophysical Union for personal use, not for redistribution. The definitive version was published in Journal of Geophysical Research 109 (2004): C06009, doi:10.1029/2003JC002150.
    Description: Tritium data, primarily from the GEOSECS and WOCE cruises of the 1970s and 1990s, are used to estimate the time-evolving 3H inventory of the North Pacific basin. In the years between the two surveys, there have been changes both laterally and vertically in the distribution of 3H in the North Pacific that reflect the mean circulation and exchanges of the basin. We develop a simple multibox model of the shallow circulation of the North Pacific to explore the long-term redistribution and changes in 3H inventories within the basin. To do this, we derived a new estimate of the delivery of bomb 3H to the North Pacific by precipitation for the period 1960–1997 and include other minor sources such as rivers. Vapor deposition dominates over direct precipitation of tritium to the basin, while inputs from continental runoff and the inflow from the south contribute over an order of magnitude less. The model predicted tritium budget of 25.1 ± 3.3 kg compares well with the estimated WOCE inventory of 23.4 ± 2.0 kg. We explore in detail the sensitivity of the budget calculations to model circulation and assumptions, as well as uncertainties in observations. We find that the ratio of tritium in vapor to that in precipitation is the most sensitive variable in the model budget, and the basin tritium inventory is consistent with a vapor-to-precipitation ratio of 0.67 (range 0.60–0.74), predictably somewhat less than the isotopic equilibrium value of 0.89. An inverse calculation shows that despite uncertainties in the tritium source function, the data also help constrain aspects of the basin circulation, including the Indonesian Throughflow.
    Description: Support for this work was provided by UK Natural Environment Research Council grant GR3/12800, and by the U.S. National Science Foundation grant OCE26080500.
    Keywords: Transient tracer ; Ocean circulation ; Ventilation
    Repository Name: Woods Hole Open Access Server
    Type: Article
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...