ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
Filter
  • Ocean carbon sink  (3)
  • Ocean circulation  (2)
  • American Geophysical Union  (5)
  • Blackwell Publishing Ltd
  • Springer Nature
  • 1
    Publication Date: 2022-05-25
    Description: Author Posting. © American Geophysical Union, 2008. This article is posted here by permission of American Geophysical Union for personal use, not for redistribution. The definitive version was published in Journal of Geophysical Research 113 (2008): C03019, doi:10.1029/2007JC004153.
    Description: Estimates of temporal trends in oceanic anthropogenic carbon dioxide (CO2) rely on the ability of empirical methods to remove the large natural variability of the ocean carbon system. A coupled carbon-climate model is used to evaluate these empirical methods. Both the ΔC* and multiple linear regression (MLR) techniques reproduce the predicted increase in dissolved inorganic carbon for the majority of the ocean and have similar average percent errors for decadal differences (24.1% and 25.5%, respectively). However, this study identifies several regions where these methods may introduce errors. Of particular note are mode and deep water formation regions, where changes in air-sea disequilibrium and structure in the MLR residuals introduce errors. These results have significant implications for decadal repeat hydrography programs, indicating the need for subannual sampling in certain regions of the oceans in order to better constrain the natural variability in the system and to robustly estimate the intrusion of anthropogenic CO2.
    Description: We would like to acknowledge funding from NSF (OCE02-23869), NCAR, the WHOI Ocean Climate Institute, a Linden Earth Systems Graduate Fellowship (MIT), and a National Defense Science and Engineering Graduate Fellowship. NCAR is sponsored by the National Science Foundation. R.W. is supported by the Office of Oceanic and Atmospheric Research at NOAA.
    Keywords: Carbon dioxide ; Ocean carbon sink ; Climate change
    Repository Name: Woods Hole Open Access Server
    Type: Article
    Format: application/pdf
    Format: text/plain
    Format: application/postscript
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 2
    Publication Date: 2022-05-25
    Description: Author Posting. © American Geophysical Union, 2007. This article is posted here by permission of American Geophysical Union for personal use, not for redistribution. The definitive version was published in Global Biogeochemical Cycles 21 (2007): GB3007, doi:10.1029/2006GB002857.
    Description: Results are presented of export production, dissolved organic matter (DOM) and dissolved oxygen simulated by 12 global ocean models participating in the second phase of the Ocean Carbon-cycle Model Intercomparison Project. A common, simple biogeochemical model is utilized in different coarse-resolution ocean circulation models. The model mean (±1σ) downward flux of organic matter across 75 m depth is 17 ± 6 Pg C yr−1. Model means of globally averaged particle export, the fraction of total export in dissolved form, surface semilabile dissolved organic carbon (DOC), and seasonal net outgassing (SNO) of oxygen are in good agreement with observation-based estimates, but particle export and surface DOC are too high in the tropics. There is a high sensitivity of the results to circulation, as evidenced by (1) the correlation of surface DOC and export with circulation metrics, including chlorofluorocarbon inventory and deep-ocean radiocarbon, (2) very large intermodel differences in Southern Ocean export, and (3) greater export production, fraction of export as DOM, and SNO in models with explicit mixed layer physics. However, deep-ocean oxygen, which varies widely among the models, is poorly correlated with other model indices. Cross-model means of several biogeochemical metrics show better agreement with observation-based estimates when restricted to those models that best simulate deep-ocean radiocarbon. Overall, the results emphasize the importance of physical processes in marine biogeochemical modeling and suggest that the development of circulation models can be accelerated by evaluating them with marine biogeochemical metrics.
    Description: R. G. N. and J. L. S. acknowledge the support of NASA grants NAG5-6451 and NAG5-6591, respectively, as part of the JGOFS Synthesis and Modeling Program. G. K. P. and F. J. acknowledge support by the Swiss National Science Foundation. European contributions were supported by the EU GOSAC Project (ENV4-CT97- 0495).
    Keywords: Export production ; Numerical modeling ; Ocean circulation
    Repository Name: Woods Hole Open Access Server
    Type: Article
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 3
    Publication Date: 2022-05-25
    Description: Author Posting. © American Geophysical Union, 2004. This article is posted here by permission of American Geophysical Union for personal use, not for redistribution. The definitive version was published in Journal of Geophysical Research 109 (2004): C06009, doi:10.1029/2003JC002150.
    Description: Tritium data, primarily from the GEOSECS and WOCE cruises of the 1970s and 1990s, are used to estimate the time-evolving 3H inventory of the North Pacific basin. In the years between the two surveys, there have been changes both laterally and vertically in the distribution of 3H in the North Pacific that reflect the mean circulation and exchanges of the basin. We develop a simple multibox model of the shallow circulation of the North Pacific to explore the long-term redistribution and changes in 3H inventories within the basin. To do this, we derived a new estimate of the delivery of bomb 3H to the North Pacific by precipitation for the period 1960–1997 and include other minor sources such as rivers. Vapor deposition dominates over direct precipitation of tritium to the basin, while inputs from continental runoff and the inflow from the south contribute over an order of magnitude less. The model predicted tritium budget of 25.1 ± 3.3 kg compares well with the estimated WOCE inventory of 23.4 ± 2.0 kg. We explore in detail the sensitivity of the budget calculations to model circulation and assumptions, as well as uncertainties in observations. We find that the ratio of tritium in vapor to that in precipitation is the most sensitive variable in the model budget, and the basin tritium inventory is consistent with a vapor-to-precipitation ratio of 0.67 (range 0.60–0.74), predictably somewhat less than the isotopic equilibrium value of 0.89. An inverse calculation shows that despite uncertainties in the tritium source function, the data also help constrain aspects of the basin circulation, including the Indonesian Throughflow.
    Description: Support for this work was provided by UK Natural Environment Research Council grant GR3/12800, and by the U.S. National Science Foundation grant OCE26080500.
    Keywords: Transient tracer ; Ocean circulation ; Ventilation
    Repository Name: Woods Hole Open Access Server
    Type: Article
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 4
    Publication Date: 2022-05-25
    Description: Author Posting. © American Geophysical Union, 2008. This article is posted here by permission of American Geophysical Union for personal use, not for redistribution. The definitive version was published in Global Biogeochemical Cycles 22 (2008): GB3016, doi:10.1029/2007GB003139.
    Description: We investigate the multidecadal and decadal trends in the flux of CO2 between the atmosphere and the Southern Ocean using output from hindcast simulations of an ocean circulation model with embedded biogeochemistry. The simulations are run with NCEP-1 forcing under both preindustrial and historical atmospheric CO2 concentrations so that we can separately analyze trends in the natural and anthropogenic CO2 fluxes. We find that the Southern Ocean (〈35°S) CO2 sink has weakened by 0.1 Pg C a−1 from 1979–2004, relative to the expected sink from rising atmospheric CO2 and fixed physical climate. Although the magnitude of this trend is in agreement with prior studies (Le Quéré et al., 2007), its size may not be entirely robust because of uncertainties associated with the trend in the NCEP-1 atmospheric forcing. We attribute the weakening sink to an outgassing trend of natural CO2, driven by enhanced upwelling and equatorward transport of carbon-rich water, which are caused by a trend toward stronger and southward shifted winds over the Southern Ocean (associated with the positive trend in the Southern Annular Mode (SAM)). In contrast, the trend in the anthropogenic CO2 uptake is largely unaffected by the trend in the wind and ocean circulation. We regard this attribution of the trend as robust, and show that surface and interior ocean observations may help to solidify our findings. As coupled climate models consistently show a positive trend in the SAM in the coming century [e.g., Meehl et al., 2007], these mechanistic results are useful for projecting the future behavior of the Southern Ocean carbon sink.
    Description: This work was supported by funding from various agencies. NSL was supported by NASA grant NNG05GP78H and the NOAA Climate and Global Change postdoctoral fellowship. NG was supported by NASA grant NNG04GH53G and by ETH Zurich. SCD was supported by NASA grant NNG05GG30G.
    Keywords: Southern Ocean ; Southern Annular Mode ; Ocean carbon sink
    Repository Name: Woods Hole Open Access Server
    Type: Article
    Format: text/plain
    Format: application/postscript
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 5
    Publication Date: 2022-05-26
    Description: Author Posting. © American Geophysical Union, 2011. This article is posted here by permission of American Geophysical Union for personal use, not for redistribution. The definitive version was published in Global Biogeochemical Cycles 25 (2011): GB3023, doi:10.1029/2010GB004009.
    Description: A common approach for estimating the oceanic uptake of anthropogenic carbon dioxide (Canthro) depends on the linear approximation of oceanic dissolved inorganic carbon (DIC) from a suite of physical and biological ocean parameters. The extended multiple linear regression (eMLR) method assumes that baseline correlations and the resulting residual fields will remain constant with time even under the influence of secular climate changes. The validity of these assumptions over the 21st century is tested using a coupled carbon-climate model. Findings demonstrate that the influence of both changing climate and changing chemistry beyond 2–4 decades invalidates the assumption that the residual fields will remain constant resulting in significant errors in the eMLR estimate of Canthro. This study determines that the eMLR method is unable to describe Canthro uptake for a sampling interval of greater than 30 years if the error is to remain below 20% for many regions in the Southern Ocean, Atlantic Ocean, and western Pacific Ocean. These results suggest that, for many regions of the ocean basins, hydrographic field investigations have to be repeated at approximately decadal timescales in order to accurately predict the uptake of Canthro by the ocean if the eMLR method is used.
    Description: This work was supported by NOAA grant NA07OAR4310098 (SCD and RW) and funding from the University of Hong Kong (NFG).
    Keywords: Anthropogenic carbon detection ; Global ocean model ; Impact of global change ; Ocean carbon sink
    Repository Name: Woods Hole Open Access Server
    Type: Article
    Format: text/plain
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...