ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
Filter
  • American Association for the Advancement of Science (AAAS)  (6)
  • 1
    Publication Date: 2001-07-28
    Description: Ecological extinction caused by overfishing precedes all other pervasive human disturbance to coastal ecosystems, including pollution, degradation of water quality, and anthropogenic climate change. Historical abundances of large consumer species were fantastically large in comparison with recent observations. Paleoecological, archaeological, and historical data show that time lags of decades to centuries occurred between the onset of overfishing and consequent changes in ecological communities, because unfished species of similar trophic level assumed the ecological roles of overfished species until they too were overfished or died of epidemic diseases related to overcrowding. Retrospective data not only help to clarify underlying causes and rates of ecological change, but they also demonstrate achievable goals for restoration and management of coastal ecosystems that could not even be contemplated based on the limited perspective of recent observations alone.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Jackson, J B -- Kirby, M X -- Berger, W H -- Bjorndal, K A -- Botsford, L W -- Bourque, B J -- Bradbury, R H -- Cooke, R -- Erlandson, J -- Estes, J A -- Hughes, T P -- Kidwell, S -- Lange, C B -- Lenihan, H S -- Pandolfi, J M -- Peterson, C H -- Steneck, R S -- Tegner, M J -- Warner, R R -- New York, N.Y. -- Science. 2001 Jul 27;293(5530):629-37.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Scripps Institution of Oceanography, University of California, San Diego, La Jolla, CA 92093-0244, USA. jbcj@ucsd.edu〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/11474098" target="_blank"〉PubMed〈/a〉
    Keywords: Animals ; Archaeology ; Bacteria ; Cnidaria ; Conservation of Natural Resources ; *Ecosystem ; Eutrophication ; *Fishes ; Geologic Sediments ; Humans ; *Marine Biology ; Seaweed ; Shellfish ; Time Factors
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 2
    Publication Date: 2007-12-15
    Description: Atmospheric carbon dioxide concentration is expected to exceed 500 parts per million and global temperatures to rise by at least 2 degrees C by 2050 to 2100, values that significantly exceed those of at least the past 420,000 years during which most extant marine organisms evolved. Under conditions expected in the 21st century, global warming and ocean acidification will compromise carbonate accretion, with corals becoming increasingly rare on reef systems. The result will be less diverse reef communities and carbonate reef structures that fail to be maintained. Climate change also exacerbates local stresses from declining water quality and overexploitation of key species, driving reefs increasingly toward the tipping point for functional collapse. This review presents future scenarios for coral reefs that predict increasingly serious consequences for reef-associated fisheries, tourism, coastal protection, and people. As the International Year of the Reef 2008 begins, scaled-up management intervention and decisive action on global emissions are required if the loss of coral-dominated ecosystems is to be avoided.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Hoegh-Guldberg, O -- Mumby, P J -- Hooten, A J -- Steneck, R S -- Greenfield, P -- Gomez, E -- Harvell, C D -- Sale, P F -- Edwards, A J -- Caldeira, K -- Knowlton, N -- Eakin, C M -- Iglesias-Prieto, R -- Muthiga, N -- Bradbury, R H -- Dubi, A -- Hatziolos, M E -- New York, N.Y. -- Science. 2007 Dec 14;318(5857):1737-42.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Centre for Marine Studies, University of Queensland, St. Lucia, 4072 Queensland, Australia. oveh@uq.edu.au〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/18079392" target="_blank"〉PubMed〈/a〉
    Keywords: Animals ; *Anthozoa/growth & development/physiology ; Atmosphere ; Carbon Dioxide ; *Climate ; Dinoflagellida/physiology ; *Ecosystem ; Eukaryota/physiology ; Fishes ; Forecasting ; *Greenhouse Effect ; Hydrogen-Ion Concentration ; Oceans and Seas ; Seawater/*chemistry ; Temperature
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 3
    Publication Date: 2005-03-19
    Description: 〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Pandolfi, J M -- Jackson, J B C -- Baron, N -- Bradbury, R H -- Guzman, H M -- Hughes, T P -- Kappel, C V -- Micheli, F -- Ogden, J C -- Possingham, H P -- Sala, E -- New York, N.Y. -- Science. 2005 Mar 18;307(5716):1725-6.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Centre for Marine Studies and Department of Earth Sciences, University of Queensland, St. Lucia, QLD 4072, Australia. j.pandolfi@uq.edu.au〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/15774744" target="_blank"〉PubMed〈/a〉
    Keywords: Animals ; *Anthozoa ; Biodiversity ; Biomass ; Conservation of Natural Resources ; *Ecosystem ; Eutrophication ; Fishes ; Food Chain ; Greenhouse Effect ; International Cooperation ; Public Policy ; United States ; Water Pollution
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 4
    Publication Date: 2003-08-16
    Description: Degradation of coral reef ecosystems began centuries ago, but there is no global summary of the magnitude of change. We compiled records, extending back thousands of years, of the status and trends of seven major guilds of carnivores, herbivores, and architectural species from 14 regions. Large animals declined before small animals and architectural species, and Atlantic reefs declined before reefs in the Red Sea and Australia, but the trajectories of decline were markedly similar worldwide. All reefs were substantially degraded long before outbreaks of coral disease and bleaching. Regardless of these new threats, reefs will not survive without immediate protection from human exploitation over large spatial scales.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Pandolfi, John M -- Bradbury, Roger H -- Sala, Enric -- Hughes, Terence P -- Bjorndal, Karen A -- Cooke, Richard G -- McArdle, Deborah -- McClenachan, Loren -- Newman, Marah J H -- Paredes, Gustavo -- Warner, Robert R -- Jackson, Jeremy B C -- New York, N.Y. -- Science. 2003 Aug 15;301(5635):955-8.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Department of Paleobiology, MRC-121, National Museum of Natural History, Post Office Box 37012, Smithsonian Institution, Washington, DC 20013-7012, USA. pandolfi.john@nmnh.si.edu〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/12920296" target="_blank"〉PubMed〈/a〉
    Keywords: Animals ; Anthozoa/*growth & development ; Conservation of Natural Resources ; Culture ; *Ecosystem ; Humans ; Population Dynamics ; Principal Component Analysis ; Time Factors
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 5
    Publication Date: 2006-06-24
    Description: Estuarine and coastal transformation is as old as civilization yet has dramatically accelerated over the past 150 to 300 years. Reconstructed time lines, causes, and consequences of change in 12 once diverse and productive estuaries and coastal seas worldwide show similar patterns: Human impacts have depleted 〉90% of formerly important species, destroyed 〉65% of seagrass and wetland habitat, degraded water quality, and accelerated species invasions. Twentieth-century conservation efforts achieved partial recovery of upper trophic levels but have so far failed to restore former ecosystem structure and function. Our results provide detailed historical baselines and quantitative targets for ecosystem-based management and marine conservation.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Lotze, Heike K -- Lenihan, Hunter S -- Bourque, Bruce J -- Bradbury, Roger H -- Cooke, Richard G -- Kay, Matthew C -- Kidwell, Susan M -- Kirby, Michael X -- Peterson, Charles H -- Jackson, Jeremy B C -- New York, N.Y. -- Science. 2006 Jun 23;312(5781):1806-9.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Biology Department, Dalhousie University, 1355 Oxford Street, Halifax, NS, Canada B3H 4J1. hlotze@dal.ca〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/16794081" target="_blank"〉PubMed〈/a〉
    Keywords: Animals ; *Biodiversity ; Conservation of Natural Resources/*history ; *Ecosystem ; Environment ; Eutrophication ; Geography ; History, 18th Century ; History, 19th Century ; History, 20th Century ; History, 21st Century ; History, Ancient ; History, Medieval ; Human Activities/history ; Humans ; *Invertebrates ; Plants ; Population Density ; Population Dynamics ; *Seawater ; *Vertebrates ; *Water ; Water Pollution
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 6
    Publication Date: 2019-03-06
    Description: Atmospheric carbon dioxide concentration is expected to exceed 500 parts per million and global temperatures to rise by at least 2°C by 2050 to 2100, values that significantly exceed those of at least the past 420,000 years during which most extant marine organisms evolved. Under conditions expected in the 21st century, global warming and ocean acidification will compromise carbonate accretion, with corals becoming increasingly rare on reef systems. The result will be less diverse reef communities and carbonate reef structures that fail to be maintained. Climate change also exacerbates local stresses from declining water quality and overexploitation of key species, driving reefs increasingly toward the tipping point for functional collapse. This review presents future scenarios for coral reefs that predict increasingly serious consequences for reef-associated fisheries, tourism, coastal protection, and people. As the International Year of the Reef 2008 begins, scaled-up management intervention and decisive action on global emissions are required if the loss of coral-dominated ecosystems is to be avoided.
    Type: Article , PeerReviewed
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...