ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    facet.materialart.
    Unknown
    American Association for the Advancement of Science (AAAS)
    Publication Date: 1999-07-27
    Description: The patterned expression of floral homeotic genes in Arabidopsis depends on the earlier action of meristem-identity genes such as LEAFY, which encodes a transcription factor that determines whether a meristem will generate flowers instead of leaves and shoots. The LEAFY protein, which is expressed throughout the flower, participates in the activation of homeotic genes, which are expressed in specific regions of the flower. Analysis of a LEAFY-responsive enhancer in the homeotic gene AGAMOUS indicates that direct interaction of LEAFY with this enhancer is required for its activity in plants. Thus, LEAFY is a direct upstream regulator of floral homeotic genes.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Busch, M A -- Bomblies, K -- Weigel, D -- New York, N.Y. -- Science. 1999 Jul 23;285(5427):585-7.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉The Salk Institute for Biological Studies, 10010 North Torrey Pines Road, La Jolla, CA 92037, USA.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/10417388" target="_blank"〉PubMed〈/a〉
    Keywords: AGAMOUS Protein, Arabidopsis ; Arabidopsis/*genetics ; *Arabidopsis Proteins ; Binding Sites ; DNA-Binding Proteins/*genetics ; Enhancer Elements, Genetic ; *Gene Expression Regulation, Plant ; *Genes, Homeobox ; Genes, Plant ; Genes, Reporter ; Meristem/genetics/metabolism ; Plant Proteins/*genetics/*metabolism ; Plant Structures/genetics/metabolism ; Point Mutation ; Trans-Activators/genetics/metabolism ; *Transcription Factors ; *Transcriptional Activation
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 2
    Publication Date: 2005-04-12
    Description: The plant-specific transcription factor LEAFY controls general aspects of the life cycle in a basal plant, the moss Physcomitrella patens. In contrast, LEAFY has more specialized functions in angiosperms, where it specifically induces floral fate during the reproductive phase. This raises the question of a concomitant change in the biochemical function of LEAFY during the evolution of land plants. We report that the DNA binding domain of LEAFY, although largely conserved, has diverged in activity. On the contrary, other, more rapidly evolving portions of the protein have few effects on LEAFY activity.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Maizel, Alexis -- Busch, Maximilian A -- Tanahashi, Takako -- Perkovic, Josip -- Kato, Masahiro -- Hasebe, Mitsuyasu -- Weigel, Detlef -- New York, N.Y. -- Science. 2005 Apr 8;308(5719):260-3.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Department of Molecular Biology, Max Planck Institute for Developmental Biology, D-72076 Tubingen, Germany.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/15821093" target="_blank"〉PubMed〈/a〉
    Keywords: Amino Acid Sequence ; Binding Sites ; DNA, Plant/metabolism ; *Evolution, Molecular ; Flowers/*growth & development ; Phylogeny ; Plant Proteins/*genetics/metabolism ; Plants/genetics ; Transcription Factors/*genetics/metabolism
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 3
    Publication Date: 2019
    Description: 〈p〉The ability of naturally occurring proteins to change conformation in response to environmental changes is critical to biological function. Although there have been advances in the de novo design of stable proteins with a single, deep free-energy minimum, the design of conformational switches remains challenging. We present a general strategy to design pH-responsive protein conformational changes by precisely preorganizing histidine residues in buried hydrogen-bond networks. We design homotrimers and heterodimers that are stable above pH 6.5 but undergo cooperative, large-scale conformational changes when the pH is lowered and electrostatic and steric repulsion builds up as the network histidine residues become protonated. The transition pH and cooperativity can be controlled through the number of histidine-containing networks and the strength of the surrounding hydrophobic interactions. Upon disassembly, the designed proteins disrupt lipid membranes both in vitro and after being endocytosed in mammalian cells. Our results demonstrate that environmentally triggered conformational changes can now be programmed by de novo protein design.〈/p〉
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...