ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
Filter
  • Articles  (6)
  • Male  (5)
  • Female  (3)
  • Electronic structure and strongly correlated systems
  • Models, Molecular
  • American Association for the Advancement of Science (AAAS)  (6)
  • 1
    Publication Date: 2001-09-05
    Description: The coagulation protease thrombin triggers fibrin formation, platelet activation, and other cellular responses at sites of tissue injury. We report a role for PAR1, a protease-activated G protein-coupled receptor for thrombin, in embryonic development. Approximately half of Par1-/- mouse embryos died at midgestation with bleeding from multiple sites. PAR1 is expressed in endothelial cells, and a PAR1 transgene driven by an endothelial-specific promoter prevented death of Par1-/- embryos. Our results suggest that the coagulation cascade and PAR1 modulate endothelial cell function in developing blood vessels and that thrombin's actions on endothelial cells-rather than on platelets, mesenchymal cells, or fibrinogen-contribute to vascular development and hemostasis in the mouse embryo.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Griffin, C T -- Srinivasan, Y -- Zheng, Y W -- Huang, W -- Coughlin, S R -- HL44907/HL/NHLBI NIH HHS/ -- HL65590/HL/NHLBI NIH HHS/ -- New York, N.Y. -- Science. 2001 Aug 31;293(5535):1666-70.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Cardiovascular Research Institute, University of California at San Francisco (UCSF), San Francisco, California 94143.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/11533492" target="_blank"〉PubMed〈/a〉
    Keywords: Animals ; Blood Coagulation ; Blood Coagulation Factors/physiology ; Blood Vessels/*embryology/metabolism ; Calcium/metabolism ; Crosses, Genetic ; *Embryonic and Fetal Development ; Endocardium/embryology/metabolism ; Endothelium, Vascular/cytology/*embryology/metabolism ; Factor V/genetics/physiology ; Female ; Fibrinogen/genetics/physiology ; Fibroblasts/metabolism ; Hemorrhage/embryology ; Hemostasis ; Male ; Mice ; Mice, Inbred C57BL ; Mice, Inbred Strains ; Mice, Transgenic ; *Neovascularization, Physiologic ; Phenotype ; Prothrombin/genetics/physiology ; Receptor, PAR-1 ; Receptors, Thrombin/deficiency/genetics/*physiology ; *Signal Transduction ; Thrombin/physiology ; Thromboplastin/genetics/physiology
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 2
    Publication Date: 2001-05-12
    Description: To test the hypotheses of modern human origin in East Asia, we sampled 12,127 male individuals from 163 populations and typed for three Y chromosome biallelic markers (YAP, M89, and M130). All the individuals carried a mutation at one of the three sites. These three mutations (YAP+, M89T, and M130T) coalesce to another mutation (M168T), which originated in Africa about 35,000 to 89,000 years ago. Therefore, the data do not support even a minimal in situ hominid contribution in the origin of anatomically modern humans in East Asia.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Ke, Y -- Su, B -- Song, X -- Lu, D -- Chen, L -- Li, H -- Qi, C -- Marzuki, S -- Deka, R -- Underhill, P -- Xiao, C -- Shriver, M -- Lell, J -- Wallace, D -- Wells, R S -- Seielstad, M -- Oefner, P -- Zhu, D -- Jin, J -- Huang, W -- Chakraborty, R -- Chen, Z -- Jin, L -- New York, N.Y. -- Science. 2001 May 11;292(5519):1151-3.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉State Key Laboratory of Genetic Engineering, Institute of Genetics, School of Life Sciences, Fudan University, 220 Handan Road, Shanghai, China.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/11349147" target="_blank"〉PubMed〈/a〉
    Keywords: Africa/ethnology ; Alleles ; Asia ; Female ; Gene Frequency/genetics ; Haplotypes/genetics ; Humans ; Male ; Mutation/genetics ; Pacific Islands ; *Phylogeny ; Polymorphism, Genetic/genetics ; Population Density ; Y Chromosome/*genetics
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 3
    Publication Date: 2003-01-11
    Description: Atrial fibrillation (AF) is a common cardiac arrhythmia whose molecular etiology is poorly understood. We studied a family with hereditary persistent AF and identified the causative mutation (S140G) in the KCNQ1 (KvLQT1) gene on chromosome 11p15.5. The KCNQ1 gene encodes the pore-forming alpha subunit of the cardiac I(Ks) channel (KCNQ1/KCNE1), the KCNQ1/KCNE2 and the KCNQ1/KCNE3 potassium channels. Functional analysis of the S140G mutant revealed a gain-of-function effect on the KCNQ1/KCNE1 and the KCNQ1/KCNE2 currents, which contrasts with the dominant negative or loss-of-function effects of the KCNQ1 mutations previously identified in patients with long QT syndrome. Thus, the S140G mutation is likely to initiate and maintain AF by reducing action potential duration and effective refractory period in atrial myocytes.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Chen, Yi-Han -- Xu, Shi-Jie -- Bendahhou, Said -- Wang, Xiao-Liang -- Wang, Ying -- Xu, Wen-Yuan -- Jin, Hong-Wei -- Sun, Hao -- Su, Xiao-Yan -- Zhuang, Qi-Nan -- Yang, Yi-Qing -- Li, Yue-Bin -- Liu, Yi -- Xu, Hong-Ju -- Li, Xiao-Fei -- Ma, Ning -- Mou, Chun-Ping -- Chen, Zhu -- Barhanin, Jacques -- Huang, Wei -- New York, N.Y. -- Science. 2003 Jan 10;299(5604):251-4.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Department of Cardiology, Tongji Hospital, and Institute of Medical Genetics, Tongji University, 399 Xin Cun Road, Shanghai 200065, People's Republic of China. drchen@public7.sta.net.cn〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/12522251" target="_blank"〉PubMed〈/a〉
    Keywords: Action Potentials ; Adolescent ; Adult ; Aged ; Animals ; Atrial Fibrillation/*genetics/physiopathology ; COS Cells ; Child ; China ; Chromosomes, Human, Pair 11/genetics ; Electrocardiography ; Female ; Haplotypes ; Heart Atria/physiopathology ; Heart Ventricles/physiopathology ; Humans ; KCNQ Potassium Channels ; KCNQ1 Potassium Channel ; Lod Score ; Long QT Syndrome/genetics/physiopathology ; Male ; Microsatellite Repeats ; Middle Aged ; Mutation ; *Mutation, Missense ; Myocytes, Cardiac/*physiology ; Patch-Clamp Techniques ; Pedigree ; Potassium Channels/*genetics/physiology ; *Potassium Channels, Voltage-Gated
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 4
    Publication Date: 1994-08-19
    Description: The three-dimensional structure of an unusually active hydrolytic antibody with a phosphonate transition state analog (hapten) bound to the active site has been solved to 2.5 A resolution. The antibody (17E8) catalyzes the hydrolysis of norleucine and methionine phenyl esters and is selective for amino acid esters that have the natural alpha-carbon L configuration. A plot of the pH-dependence of the antibody-catalyzed reaction is bell-shaped with an activity maximum at pH 9.5; experiments on mechanism lend support to the formation of a covalent acyl-antibody intermediate. The structural and kinetic data are complementary and support a hydrolytic mechanism for the antibody that is remarkably similar to that of the serine proteases. The antibody active site contains a Ser-His dyad structure proximal to the phosphorous atom of the bound hapten that resembles two of the three components of the Ser-His-Asp catalytic triad of serine proteases. The antibody active site also contains a Lys residue to stabilize oxyanion formation, and a hydrophobic binding pocket for specific substrate recognition of norleucine and methionine side chains. The structure identifies active site residues that mediate catalysis and suggests specific mutations that may improve the catalytic efficiency of the antibody. This high resolution structure of a catalytic antibody-hapten complex shows that antibodies can converge on active site structures that have arisen through natural enzyme evolution.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Zhou, G W -- Guo, J -- Huang, W -- Fletterick, R J -- Scanlan, T S -- DK39304/DK/NIDDK NIH HHS/ -- New York, N.Y. -- Science. 1994 Aug 19;265(5175):1059-64.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Department of Biochemistry and Biophysics, University of California, San Francisco 94143-0448.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/8066444" target="_blank"〉PubMed〈/a〉
    Keywords: Amino Acid Sequence ; Antibodies, Catalytic/*chemistry/immunology/metabolism ; Binding Sites ; Computer Graphics ; Crystallization ; Crystallography, X-Ray ; Haptens/metabolism ; Hydrogen Bonding ; Hydrogen-Ion Concentration ; Hydrolysis ; Models, Molecular ; Molecular Sequence Data ; Protein Conformation ; Serine Endopeptidases/*chemistry/metabolism
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 5
    facet.materialart.
    Unknown
    American Association for the Advancement of Science (AAAS)
    Publication Date: 1994-09-23
    Description: During tactile learning there is a transformation in the way the primary somatosensory cortex integrates, represents, and distributes information from the skin. To define this transformation, the site of earliest modification has been identified in rat somatosensory cortex after a change in sensory experience. Afferent activity was manipulated by clipping all except two whiskers on one side of the snout ("whisker pairing"), and the receptive fields of neurons at different cortical depths were mapped 24 hours later. Neurons in layer IV, the target of the primary thalamic pathway, were unaltered, whereas neurons located above and below layer IV showed significant changes. These changes were similar to those that occur in layer IV after longer periods of whisker pairing. The findings support the hypothesis that the layers of cortex contribute differently to plasticity. Neurons in the supragranular and infragranular layers respond rapidly to changes in sensory experience and may contribute to subsequent modification in layer IV.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Diamond, M E -- Huang, W -- Ebner, F F -- NS-25907/NS/NINDS NIH HHS/ -- New York, N.Y. -- Science. 1994 Sep 23;265(5180):1885-8.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Department of Sciences and Biomedical Technologies, University of Udine, Italy.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/8091215" target="_blank"〉PubMed〈/a〉
    Keywords: Action Potentials ; Afferent Pathways ; Animals ; Male ; *Neuronal Plasticity ; Neurons, Afferent/*physiology ; Rats ; Somatosensory Cortex/*physiology ; Thalamic Nuclei/physiology ; Vibrissae/*innervation
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 6
    Publication Date: 2015-11-07
    Description: The mammalian transcription factors CLOCK and BMAL1 are essential components of the molecular clock that coordinate behavior and metabolism with the solar cycle. Genetic or environmental perturbation of circadian cycles contributes to metabolic disorders including type 2 diabetes. To study the impact of the cell-autonomous clock on pancreatic beta cell function, we examined pancreatic islets from mice with either intact or disrupted BMAL1 expression both throughout life and limited to adulthood. We found pronounced oscillation of insulin secretion that was synchronized with the expression of genes encoding secretory machinery and signaling factors that regulate insulin release. CLOCK/BMAL1 colocalized with the pancreatic transcription factor PDX1 within active enhancers distinct from those controlling rhythmic metabolic gene networks in liver. We also found that beta cell clock ablation in adult mice caused severe glucose intolerance. Thus, cell type-specific enhancers underlie the circadian control of peripheral metabolism throughout life and may help to explain its dysregulation in diabetes.〈br /〉〈br /〉〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4669216/" target="_blank"〉〈img src="https://static.pubmed.gov/portal/portal3rc.fcgi/4089621/img/3977009" border="0"〉〈/a〉   〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4669216/" target="_blank"〉This paper as free author manuscript - peer-reviewed and accepted for publication〈/a〉〈br /〉〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Perelis, Mark -- Marcheva, Biliana -- Ramsey, Kathryn Moynihan -- Schipma, Matthew J -- Hutchison, Alan L -- Taguchi, Akihiko -- Peek, Clara Bien -- Hong, Heekyung -- Huang, Wenyu -- Omura, Chiaki -- Allred, Amanda L -- Bradfield, Christopher A -- Dinner, Aaron R -- Barish, Grant D -- Bass, Joseph -- ES05703/ES/NIEHS NIH HHS/ -- K01 DK105137/DK/NIDDK NIH HHS/ -- P01 AG011412/AG/NIA NIH HHS/ -- P01AG011412/AG/NIA NIH HHS/ -- P60 DK020595/DK/NIDDK NIH HHS/ -- P60DK020595/DK/NIDDK NIH HHS/ -- R01 DK090625/DK/NIDDK NIH HHS/ -- R01 ES005703/ES/NIEHS NIH HHS/ -- R01DK090625/DK/NIDDK NIH HHS/ -- T32 DK007169/DK/NIDDK NIH HHS/ -- T32 GM007281/GM/NIGMS NIH HHS/ -- T32 HL007909/HL/NHLBI NIH HHS/ -- T32GM07281/GM/NIGMS NIH HHS/ -- New York, N.Y. -- Science. 2015 Nov 6;350(6261):aac4250. doi: 10.1126/science.aac4250.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Department of Medicine, Division of Endocrinology, Metabolism and Molecular Medicine, Northwestern University Feinberg School of Medicine, Chicago, IL 60611, USA. ; Center for Genetic Medicine, Northwestern University, Chicago, IL 60611, USA. ; Medical Scientist Training Program, University of Chicago, Chicago, IL 60637, USA. Graduate Program in the Biophysical Sciences, University of Chicago, Chicago, IL 60637, USA. James Franck Institute, University of Chicago, Chicago, IL 60637, USA. ; McArdle Laboratory for Cancer Research, University of Wisconsin, Madison, WI 52705, USA. ; Graduate Program in the Biophysical Sciences, University of Chicago, Chicago, IL 60637, USA. James Franck Institute, University of Chicago, Chicago, IL 60637, USA. Department of Chemistry, University of Chicago, Chicago, IL 60637, USA. ; Department of Medicine, Division of Endocrinology, Metabolism and Molecular Medicine, Northwestern University Feinberg School of Medicine, Chicago, IL 60611, USA. j-bass@northwestern.edu.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/26542580" target="_blank"〉PubMed〈/a〉
    Keywords: ARNTL Transcription Factors/genetics/metabolism ; Animals ; CLOCK Proteins/metabolism ; Circadian Rhythm/*genetics ; Diabetes Mellitus, Type 2/genetics/metabolism ; Enhancer Elements, Genetic/*physiology ; Exocytosis/genetics ; *Gene Expression Regulation ; Glucose Intolerance ; Homeodomain Proteins/metabolism ; Humans ; Insulin/*secretion ; Insulin-Secreting Cells/*secretion ; Liver/metabolism ; Male ; Mice ; Mice, Inbred C57BL ; Trans-Activators/metabolism ; Transcription, Genetic
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...