ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    facet.materialart.
    Unknown
    American Association for the Advancement of Science (AAAS)
    In: Science
    Publication Date: 2016-05-27
    Description: Biomass-degrading microorganisms use lytic polysaccharide monooxygenase (LPMO) enzymes to help digest cellulose, chitin, and starch. By cleaving otherwise inaccessible crystalline cellulose chains, these enzymes provide access to hydrolytic enzymes. LPMOs are of interest to biotechnology because efficient depolymerization of cellulose is a major bottleneck for the production of biologically based chemicals and fuels. On page 1098 of this issue, Kracher et al. (1) compare LPMO-reducing substrates in fungi from different taxonomic groups and lifestyles, based on both biochemical and genomic evidence. The results provide insights into reductive activation of LPMO that are important for developing more efficient industrial enzymes for lignocellulose biorefineries. Author: Angel T. Martínez
    Keywords: Chemistry
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Geosciences , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 2
    Publication Date: 2007-10-13
    Description: Chlamydomonas reinhardtii is a unicellular green alga whose lineage diverged from land plants over 1 billion years ago. It is a model system for studying chloroplast-based photosynthesis, as well as the structure, assembly, and function of eukaryotic flagella (cilia), which were inherited from the common ancestor of plants and animals, but lost in land plants. We sequenced the approximately 120-megabase nuclear genome of Chlamydomonas and performed comparative phylogenomic analyses, identifying genes encoding uncharacterized proteins that are likely associated with the function and biogenesis of chloroplasts or eukaryotic flagella. Analyses of the Chlamydomonas genome advance our understanding of the ancestral eukaryotic cell, reveal previously unknown genes associated with photosynthetic and flagellar functions, and establish links between ciliopathy and the composition and function of flagella.〈br /〉〈br /〉〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC2875087/" target="_blank"〉〈img src="https://static.pubmed.gov/portal/portal3rc.fcgi/4089621/img/3977009" border="0"〉〈/a〉   〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC2875087/" target="_blank"〉This paper as free author manuscript - peer-reviewed and accepted for publication〈/a〉〈br /〉〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Merchant, Sabeeha S -- Prochnik, Simon E -- Vallon, Olivier -- Harris, Elizabeth H -- Karpowicz, Steven J -- Witman, George B -- Terry, Astrid -- Salamov, Asaf -- Fritz-Laylin, Lillian K -- Marechal-Drouard, Laurence -- Marshall, Wallace F -- Qu, Liang-Hu -- Nelson, David R -- Sanderfoot, Anton A -- Spalding, Martin H -- Kapitonov, Vladimir V -- Ren, Qinghu -- Ferris, Patrick -- Lindquist, Erika -- Shapiro, Harris -- Lucas, Susan M -- Grimwood, Jane -- Schmutz, Jeremy -- Cardol, Pierre -- Cerutti, Heriberto -- Chanfreau, Guillaume -- Chen, Chun-Long -- Cognat, Valerie -- Croft, Martin T -- Dent, Rachel -- Dutcher, Susan -- Fernandez, Emilio -- Fukuzawa, Hideya -- Gonzalez-Ballester, David -- Gonzalez-Halphen, Diego -- Hallmann, Armin -- Hanikenne, Marc -- Hippler, Michael -- Inwood, William -- Jabbari, Kamel -- Kalanon, Ming -- Kuras, Richard -- Lefebvre, Paul A -- Lemaire, Stephane D -- Lobanov, Alexey V -- Lohr, Martin -- Manuell, Andrea -- Meier, Iris -- Mets, Laurens -- Mittag, Maria -- Mittelmeier, Telsa -- Moroney, James V -- Moseley, Jeffrey -- Napoli, Carolyn -- Nedelcu, Aurora M -- Niyogi, Krishna -- Novoselov, Sergey V -- Paulsen, Ian T -- Pazour, Greg -- Purton, Saul -- Ral, Jean-Philippe -- Riano-Pachon, Diego Mauricio -- Riekhof, Wayne -- Rymarquis, Linda -- Schroda, Michael -- Stern, David -- Umen, James -- Willows, Robert -- Wilson, Nedra -- Zimmer, Sara Lana -- Allmer, Jens -- Balk, Janneke -- Bisova, Katerina -- Chen, Chong-Jian -- Elias, Marek -- Gendler, Karla -- Hauser, Charles -- Lamb, Mary Rose -- Ledford, Heidi -- Long, Joanne C -- Minagawa, Jun -- Page, M Dudley -- Pan, Junmin -- Pootakham, Wirulda -- Roje, Sanja -- Rose, Annkatrin -- Stahlberg, Eric -- Terauchi, Aimee M -- Yang, Pinfen -- Ball, Steven -- Bowler, Chris -- Dieckmann, Carol L -- Gladyshev, Vadim N -- Green, Pamela -- Jorgensen, Richard -- Mayfield, Stephen -- Mueller-Roeber, Bernd -- Rajamani, Sathish -- Sayre, Richard T -- Brokstein, Peter -- Dubchak, Inna -- Goodstein, David -- Hornick, Leila -- Huang, Y Wayne -- Jhaveri, Jinal -- Luo, Yigong -- Martinez, Diego -- Ngau, Wing Chi Abby -- Otillar, Bobby -- Poliakov, Alexander -- Porter, Aaron -- Szajkowski, Lukasz -- Werner, Gregory -- Zhou, Kemin -- Grigoriev, Igor V -- Rokhsar, Daniel S -- Grossman, Arthur R -- GM07185/GM/NIGMS NIH HHS/ -- GM42143/GM/NIGMS NIH HHS/ -- R01 GM032843/GM/NIGMS NIH HHS/ -- R01 GM042143/GM/NIGMS NIH HHS/ -- R01 GM042143-09/GM/NIGMS NIH HHS/ -- R01 GM060992/GM/NIGMS NIH HHS/ -- R01 GM062915-06/GM/NIGMS NIH HHS/ -- R37 GM030626/GM/NIGMS NIH HHS/ -- R37 GM042143/GM/NIGMS NIH HHS/ -- New York, N.Y. -- Science. 2007 Oct 12;318(5848):245-50.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Department of Chemistry and Biochemistry, University of California at Los Angeles, Los Angeles, CA 90095, USA.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/17932292" target="_blank"〉PubMed〈/a〉
    Keywords: Algal Proteins/*genetics/*physiology ; Animals ; *Biological Evolution ; Chlamydomonas reinhardtii/*genetics/physiology ; Chloroplasts/metabolism ; Computational Biology ; DNA, Algal/genetics ; Flagella/metabolism ; Genes ; *Genome ; Genomics ; Membrane Transport Proteins/genetics/physiology ; Molecular Sequence Data ; Multigene Family ; Photosynthesis/genetics ; Phylogeny ; Plants/genetics ; Proteome ; Sequence Analysis, DNA
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 3
    Publication Date: 2009-12-08
    Description: Maize domestication (Zea mays ssp. mays L.) resulted in a wide diversity of native landraces that represent an invaluable source of genetic information for exploring natural variation and genome evolution. We sequenced de novo the approximately 2-gigabase genome of the Mexican landrace Palomero Toluqueno (Palomero) and compared its features to those of the modern inbred line B73. We revealed differences concordant with its ancient origin and identified chromosomal regions of low nucleotide variability that contain domestication genes involved in heavy-metal detoxification. Our results indicate that environmental changes were important selective forces acting on maize domestication.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Vielle-Calzada, Jean-Philippe -- Martinez de la Vega, Octavio -- Hernandez-Guzman, Gustavo -- Ibarra-Laclette, Enrique -- Alvarez-Mejia, Cesar -- Vega-Arreguin, Julio C -- Jimenez-Moraila, Beatriz -- Fernandez-Cortes, Araceli -- Corona-Armenta, Guillermo -- Herrera-Estrella, Luis -- Herrera-Estrella, Alfredo -- New York, N.Y. -- Science. 2009 Nov 20;326(5956):1078. doi: 10.1126/science.1178437.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Laboratorio Nacional de Genomica para la Biodiversidad, CINVESTAV Irapuato, Km 9.6 Libramiento Norte Carretera Irapuato-Leon, 36500 Irapuato, Mexico.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/19965420" target="_blank"〉PubMed〈/a〉
    Keywords: Chromosome Mapping ; Chromosomes, Plant/genetics ; Crops, Agricultural/genetics/growth & development ; *Genes, Plant ; Genetic Variation ; *Genome, Plant ; Metals, Heavy/analysis/*metabolism/toxicity ; Molecular Sequence Data ; *Selection, Genetic ; Sequence Analysis, DNA ; Sequence Homology, Nucleic Acid ; Soil/analysis ; Zea mays/*genetics/growth & development/*metabolism
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 4
    Publication Date: 2002-12-10
    Description: We have catalogued the protein kinase complement of the human genome (the "kinome") using public and proprietary genomic, complementary DNA, and expressed sequence tag (EST) sequences. This provides a starting point for comprehensive analysis of protein phosphorylation in normal and disease states, as well as a detailed view of the current state of human genome analysis through a focus on one large gene family. We identify 518 putative protein kinase genes, of which 71 have not previously been reported or described as kinases, and we extend or correct the protein sequences of 56 more kinases. New genes include members of well-studied families as well as previously unidentified families, some of which are conserved in model organisms. Classification and comparison with model organism kinomes identified orthologous groups and highlighted expansions specific to human and other lineages. We also identified 106 protein kinase pseudogenes. Chromosomal mapping revealed several small clusters of kinase genes and revealed that 244 kinases map to disease loci or cancer amplicons.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Manning, G -- Whyte, D B -- Martinez, R -- Hunter, T -- Sudarsanam, S -- New York, N.Y. -- Science. 2002 Dec 6;298(5600):1912-34.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉SUGEN Inc., 230 East Grand Avenue, South San Francisco, CA 94080, USA. gerard-manning@sugen.com〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/12471243" target="_blank"〉PubMed〈/a〉
    Keywords: Animals ; Catalysis ; Chromosome Mapping ; Computational Biology ; Databases, Genetic ; Genes ; *Genome, Human ; Humans ; Neoplasms/genetics ; Phylogeny ; Protein Kinases/chemistry/classification/*genetics/*metabolism ; Protein Structure, Tertiary ; Pseudogenes ; Sequence Analysis, DNA ; Signal Transduction
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 5
    Publication Date: 2018-07-06
    Description: Conical intersections play a critical role in excited-state dynamics of polyatomic molecules because they govern the reaction pathways of many nonadiabatic processes. However, ultrafast probes have lacked sufficient spatial resolution to image wave-packet trajectories through these intersections directly. Here, we present the simultaneous experimental characterization of one-photon and two-photon excitation channels in isolated CF 3 I molecules using ultrafast gas-phase electron diffraction. In the two-photon channel, we have mapped out the real-space trajectories of a coherent nuclear wave packet, which bifurcates onto two potential energy surfaces when passing through a conical intersection. In the one-photon channel, we have resolved excitation of both the umbrella and the breathing vibrational modes in the CF 3 fragment in multiple nuclear dimensions. These findings benchmark and validate ab initio nonadiabatic dynamics calculations.
    Keywords: Chemistry
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Geosciences , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 6
    Publication Date: 2006-01-28
    Description: Microbial life predominates in the ocean, yet little is known about its genomic variability, especially along the depth continuum. We report here genomic analyses of planktonic microbial communities in the North Pacific Subtropical Gyre, from the ocean's surface to near-sea floor depths. Sequence variation in microbial community genes reflected vertical zonation of taxonomic groups, functional gene repertoires, and metabolic potential. The distributional patterns of microbial genes suggested depth-variable community trends in carbon and energy metabolism, attachment and motility, gene mobility, and host-viral interactions. Comparative genomic analyses of stratified microbial communities have the potential to provide significant insight into higher-order community organization and dynamics.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉DeLong, Edward F -- Preston, Christina M -- Mincer, Tracy -- Rich, Virginia -- Hallam, Steven J -- Frigaard, Niels-Ulrik -- Martinez, Asuncion -- Sullivan, Matthew B -- Edwards, Robert -- Brito, Beltran Rodriguez -- Chisholm, Sallie W -- Karl, David M -- New York, N.Y. -- Science. 2006 Jan 27;311(5760):496-503.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Massachusetts Institute of Technology, Cambridge, MA 02139, USA. delong@mit.edu〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/16439655" target="_blank"〉PubMed〈/a〉
    Keywords: Amino Acid Sequence ; Archaea/classification/*genetics/metabolism ; Archaeal Proteins/chemistry/genetics/metabolism ; Bacteria/classification/*genetics/metabolism ; Bacterial Proteins/chemistry/genetics/metabolism ; Bacteriophages/genetics ; Base Sequence ; Cloning, Molecular ; Cluster Analysis ; Computational Biology ; Cosmids ; DNA, Viral/chemistry/genetics ; Ecosystem ; Gene Library ; *Genes, Archaeal ; *Genes, Bacterial ; Genes, rRNA ; *Genomics ; Molecular Sequence Data ; Pacific Ocean ; Seawater/*microbiology ; Sequence Analysis, DNA ; Water Microbiology
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 7
    Publication Date: 2010-04-10
    Description: Transcription factors (TFs) direct gene expression by binding to DNA regulatory regions. To explore the evolution of gene regulation, we used chromatin immunoprecipitation with high-throughput sequencing (ChIP-seq) to determine experimentally the genome-wide occupancy of two TFs, CCAAT/enhancer-binding protein alpha and hepatocyte nuclear factor 4 alpha, in the livers of five vertebrates. Although each TF displays highly conserved DNA binding preferences, most binding is species-specific, and aligned binding events present in all five species are rare. Regions near genes with expression levels that are dependent on a TF are often bound by the TF in multiple species yet show no enhanced DNA sequence constraint. Binding divergence between species can be largely explained by sequence changes to the bound motifs. Among the binding events lost in one lineage, only half are recovered by another binding event within 10 kilobases. Our results reveal large interspecies differences in transcriptional regulation and provide insight into regulatory evolution.〈br /〉〈br /〉〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3008766/" target="_blank"〉〈img src="https://static.pubmed.gov/portal/portal3rc.fcgi/4089621/img/3977009" border="0"〉〈/a〉   〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3008766/" target="_blank"〉This paper as free author manuscript - peer-reviewed and accepted for publication〈/a〉〈br /〉〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Schmidt, Dominic -- Wilson, Michael D -- Ballester, Benoit -- Schwalie, Petra C -- Brown, Gordon D -- Marshall, Aileen -- Kutter, Claudia -- Watt, Stephen -- Martinez-Jimenez, Celia P -- Mackay, Sarah -- Talianidis, Iannis -- Flicek, Paul -- Odom, Duncan T -- 062023/Wellcome Trust/United Kingdom -- 079643/Wellcome Trust/United Kingdom -- 15603/Cancer Research UK/United Kingdom -- 202218/European Research Council/International -- A15603/Cancer Research UK/United Kingdom -- WT062023/Wellcome Trust/United Kingdom -- WT079643/Wellcome Trust/United Kingdom -- Cancer Research UK/United Kingdom -- New York, N.Y. -- Science. 2010 May 21;328(5981):1036-40. doi: 10.1126/science.1186176. Epub 2010 Apr 8.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Cancer Research UK, Cambridge Research Institute, Li Ka Shing Centre, Robinson Way, Cambridge CB2 0RE, UK.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/20378774" target="_blank"〉PubMed〈/a〉
    Keywords: Algorithms ; Animals ; Base Sequence ; Binding Sites ; Biological Evolution ; CCAAT-Enhancer-Binding Protein-alpha/*metabolism ; Chickens/genetics ; Chromatin Immunoprecipitation ; DNA/genetics/metabolism ; Dogs ; *Evolution, Molecular ; *Gene Expression Regulation ; *Genome ; Genome, Human ; Hepatocyte Nuclear Factor 4/*metabolism ; Humans ; Liver/*metabolism ; Mice ; Opossums/genetics ; Protein Binding ; Regulatory Sequences, Nucleic Acid ; Sequence Analysis, DNA ; Species Specificity ; Vertebrates/*genetics/metabolism
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 8
    Publication Date: 2015-04-11
    Description: Mountain gorillas are an endangered great ape subspecies and a prominent focus for conservation, yet we know little about their genomic diversity and evolutionary past. We sequenced whole genomes from multiple wild individuals and compared the genomes of all four Gorilla subspecies. We found that the two eastern subspecies have experienced a prolonged population decline over the past 100,000 years, resulting in very low genetic diversity and an increased overall burden of deleterious variation. A further recent decline in the mountain gorilla population has led to extensive inbreeding, such that individuals are typically homozygous at 34% of their sequence, leading to the purging of severely deleterious recessive mutations from the population. We discuss the causes of their decline and the consequences for their future survival.〈br /〉〈br /〉〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4668944/" target="_blank"〉〈img src="https://static.pubmed.gov/portal/portal3rc.fcgi/4089621/img/3977009" border="0"〉〈/a〉   〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4668944/" target="_blank"〉This paper as free author manuscript - peer-reviewed and accepted for publication〈/a〉〈br /〉〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Xue, Yali -- Prado-Martinez, Javier -- Sudmant, Peter H -- Narasimhan, Vagheesh -- Ayub, Qasim -- Szpak, Michal -- Frandsen, Peter -- Chen, Yuan -- Yngvadottir, Bryndis -- Cooper, David N -- de Manuel, Marc -- Hernandez-Rodriguez, Jessica -- Lobon, Irene -- Siegismund, Hans R -- Pagani, Luca -- Quail, Michael A -- Hvilsom, Christina -- Mudakikwa, Antoine -- Eichler, Evan E -- Cranfield, Michael R -- Marques-Bonet, Tomas -- Tyler-Smith, Chris -- Scally, Aylwyn -- 098051/Wellcome Trust/United Kingdom -- 099769/Z/12/Z/Wellcome Trust/United Kingdom -- 260372/European Research Council/International -- HG002385/HG/NHGRI NIH HHS/ -- R01 HG002385/HG/NHGRI NIH HHS/ -- Howard Hughes Medical Institute/ -- New York, N.Y. -- Science. 2015 Apr 10;348(6231):242-5. doi: 10.1126/science.aaa3952. Epub 2015 Apr 9.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Wellcome Trust Sanger Institute, Wellcome Trust Genome Campus, Hinxton CB10 1SA, UK. ; Institut de Biologia Evolutiva (CSIC/UPF), Parque de Investigacion Biomedica de Barcelona (PRBB), Barcelona, Catalonia 08003, Spain. ; Department of Genome Sciences, University of Washington, Seattle, WA 98195, USA. ; Wellcome Trust Sanger Institute, Wellcome Trust Genome Campus, Hinxton CB10 1SA, UK. Department of Applied Mathematics and Theoretical Physics, University of Cambridge, Cambridge CB3 0WA, UK. ; Department of Biology, University of Copenhagen, DK-2200 Copenhagen N, Denmark. ; Institute of Medical Genetics, Cardiff University, Cardiff CF14 4XN, UK. ; Wellcome Trust Sanger Institute, Wellcome Trust Genome Campus, Hinxton CB10 1SA, UK. Department of Biological, Geological and Environmental Sciences, University of Bologna, 40134 Bologna, Italy. ; Research and Conservation, Copenhagen Zoo, DK-2000 Frederiksberg, Denmark. ; Rwanda Development Board, KG 9 Avenue, Kigali, Rwanda. ; Department of Genome Sciences, University of Washington, Seattle, WA 98195, USA. Howard Hughes Medical Institute, Seattle, WA 91895, USA. ; Gorilla Doctors, Karen C. Drayer Wildlife Health Center, University of California, Davis, CA 95616, USA. ; Institut de Biologia Evolutiva (CSIC/UPF), Parque de Investigacion Biomedica de Barcelona (PRBB), Barcelona, Catalonia 08003, Spain. Centro Nacional de Analisis Genomico (Parc Cientific de Barcelona), Baldiri Reixac 4, 08028 Barcelona, Spain. ; Wellcome Trust Sanger Institute, Wellcome Trust Genome Campus, Hinxton CB10 1SA, UK. cts@sanger.ac.uk aos21@cam.ac.uk. ; Department of Genetics, University of Cambridge, Cambridge CB2 3EH, UK. cts@sanger.ac.uk aos21@cam.ac.uk.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/25859046" target="_blank"〉PubMed〈/a〉
    Keywords: Adaptation, Physiological ; Animals ; Biological Evolution ; DNA Copy Number Variations ; Democratic Republic of the Congo ; Endangered Species ; Female ; *Genetic Variation ; *Genome ; Gorilla gorilla/classification/*genetics/physiology ; Homozygote ; *Inbreeding ; Linkage Disequilibrium ; Male ; Mutation ; Population Dynamics ; Rwanda ; Selection, Genetic ; Sequence Analysis, DNA ; Species Specificity ; Time Factors
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 9
    Publication Date: 2017-08-04
    Description: Biological systems sense and respond to mechanical stimuli in a complex manner. In an effort to develop synthetic materials that transduce mechanical force into multifold changes in their intrinsic properties, we report on a mechanochemically responsive nonconjugated polymer that converts to a conjugated polymer via an extensive rearrangement of the macromolecular structure in response to force. Our design is based on the facile mechanochemical unzipping of polyladderene, a polymer inspired by a lipid natural product structure and prepared via direct metathesis polymerization. The resultant polyacetylene block copolymers exhibit long conjugation length and uniform trans-configuration and self-assemble into semiconducting nanowires. Calculations support a tandem unzipping mechanism of the ladderene units.
    Keywords: Chemistry
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Geosciences , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 10
    Publication Date: 2017-11-03
    Description: The irradiation of gold nanorod colloids with a femtosecond laser can be tuned to induce controlled nanorod reshaping, yielding colloids with exceptionally narrow localized surface plasmon resonance bands. The process relies on a regime characterized by a gentle multishot reduction of the aspect ratio, whereas the rod shape and volume are barely affected. Successful reshaping can only occur within a narrow window of the heat dissipation rate: Low cooling rates lead to drastic morphological changes, and fast cooling has nearly no effect. Hence, a delicate balance must be achieved between irradiation fluence and surface density of the surfactant on the nanorods. This perfection process is appealing because it provides a simple, fast, reproducible, and scalable route toward gold nanorods with an optical response of exceptional quality, near the theoretical limit.
    Keywords: Chemistry
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Geosciences , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...