ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
Filter
  • Mice  (14)
  • American Association for the Advancement of Science (AAAS)  (12)
  • Springer  (2)
Collection
Publisher
  • 1
    Electronic Resource
    Electronic Resource
    Springer
    Calcified tissue international 27 (1979), S. 19-26 
    ISSN: 1432-0827
    Keywords: Bone diseases ; Familial hypophosphatemia ; Magnesium ; Mice ; Phosphorus
    Source: Springer Online Journal Archives 1860-2000
    Topics: Biology , Medicine , Physics
    Notes: Summary A new genetic mutant in mice,Hyp, has been proposed as a model for the human disease X-linked hypophosphatemia (the most common form of vitamin D-resistant rickets). The gene is X-linked, dominant, and produces reduced renal tubular reabsorption of phosphate, hypophosphatemia, and dwarfism. Our goal was to evaluate the skeletal changes histologically and to measure chemically the prominant blood and bone minerals to judge the suitability of this mutant as a model for the human disease. Thirteen-week-old hemizygousHyp male mice were compared with their normal littermate controls. TheHyp mice were hypocalcemic, hypophosphatemic, hypermagnesemic, and had elevated plasma alkaline phosphatase. The femur ash weighed less than half the normal ash weight but had a normal Ca:P ratio. The ash composition was high in %Na and K but low in %Mg. The mandibular incisor ash was also low in %Mg. Histologically the femur showed wide osteoid borders and wide epiphyseal plate. Microradiography revealed reduced bone density and enlarged osteocyte lacunae. Skeletal muscle samples, although smaller in theHyp mice, showed no striking alternations in inorganic or total phosphate content, dry weight (as % wet weight), or extracellular fluid space. TheHyp gene in mice seems to produce a condition similar to that of X-linked hypophosphatemia in humans.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 2
    Electronic Resource
    Electronic Resource
    Springer
    Calcified tissue international 36 (1984), S. 662-667 
    ISSN: 1432-0827
    Keywords: Vitamin D ; Hyp ; X-linked hypophosphatemia ; Metabolic bone disease ; Mice
    Source: Springer Online Journal Archives 1860-2000
    Topics: Biology , Medicine , Physics
    Notes: Summary Hyp mice are a model for human X-linked hypophosphatemia (vitamin D-resistant rickets.) To determine whether an abnormality of vitamin D metabolism exists in this disease, the profiles of the metabolites of vitamin D were determined in normal andHyp mouse plasma.Hyp and normal mice were fed a vitamin D-deficient diet and received 1,23H-vitamin D3 at 16 Ci/mmol by stomach tube at 5 ng/g body weight (0.21 µCi/g b.w.) on alternate days for 14 days. The dose of vitamin D given maintained near normal plasma 25-OH-vitamin D. Thus the mice were in a vitamin D-replete state with all metabolite pools labeled with3H. Plasma was collected from 4 normal and 4Hyp mice. The plasma was extracted, and the extracts were chromatographed separately for each mouse on an LH-20 column. Each major peak of radioactivity was rechromatographed using high performance liquid chromatography on a Zorbax-Sil column using solvent systems known to resolve several vitamin D metabolites. Twenty-one radioactive peaks were identified. The disintegrations per minute of3H in each peak were quantified and converted to plasma concentration using the known specific activity of the administered vitamin D. The 25-OH-vitamin D accounted for 55% of the circulating radioactivity, and 24,25-(OH)2-vitamin D accounted for 22%. The plasma levels of 24,25-(OH)2-vitamin D were similar to levels previously reported by us using protein binding assays. No peaks of radioactivity were missing in the plasma extracts of theHyp mice. Also there was no evidence that plasma 24,25-(OH)2-vitamin D was elevated in theHyp mice.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 3
    Publication Date: 2002-04-20
    Description: 〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Li, Zhixiong -- Dullmann, Jochen -- Schiedlmeier, Bernd -- Schmidt, Manfred -- von Kalle, Christof -- Meyer, Johann -- Forster, Martin -- Stocking, Carol -- Wahlers, Anke -- Frank, Oliver -- Ostertag, Wolfram -- Kuhlcke, Klaus -- Eckert, Hans-Georg -- Fehse, Boris -- Baum, Christopher -- New York, N.Y. -- Science. 2002 Apr 19;296(5567):497.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Heinrich-Pette-Institute, D-20251 Hamburg, Germany.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/11964471" target="_blank"〉PubMed〈/a〉
    Keywords: Animals ; Bone Marrow Cells/metabolism ; Bone Marrow Transplantation ; DNA-Binding Proteins/genetics/metabolism ; *Gene Transfer, Horizontal ; Genetic Therapy ; *Genetic Vectors ; Hematopoiesis, Extramedullary ; Leukemia, Monocytic, Acute/*etiology ; Mice ; Mice, Inbred C57BL ; Preleukemia/*etiology ; *Proto-Oncogenes ; Receptor, Nerve Growth Factor ; Receptor, trkA/genetics/metabolism ; Receptors, Nerve Growth Factor/*genetics/metabolism ; Retroviridae/*genetics ; Transcription Factors/genetics ; Transgenes
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 4
    Publication Date: 2006-05-06
    Description: Fat tissue is the most important energy depot in vertebrates. The release of free fatty acids (FFAs) from stored fat requires the enzymatic activity of lipases. We showed that genetic inactivation of adipose triglyceride lipase (ATGL) in mice increases adipose mass and leads to triacylglycerol deposition in multiple tissues. ATGL-deficient mice accumulated large amounts of lipid in the heart, causing cardiac dysfunction and premature death. Defective cold adaptation indicated that the enzyme provides FFAs to fuel thermogenesis. The reduced availability of ATGL-derived FFAs leads to increased glucose use, increased glucose tolerance, and increased insulin sensitivity. These results indicate that ATGL is rate limiting in the catabolism of cellular fat depots and plays an important role in energy homeostasis.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Haemmerle, Guenter -- Lass, Achim -- Zimmermann, Robert -- Gorkiewicz, Gregor -- Meyer, Carola -- Rozman, Jan -- Heldmaier, Gerhard -- Maier, Robert -- Theussl, Christian -- Eder, Sandra -- Kratky, Dagmar -- Wagner, Erwin F -- Klingenspor, Martin -- Hoefler, Gerald -- Zechner, Rudolf -- F 3001/Austrian Science Fund FWF/Austria -- F 3002/Austrian Science Fund FWF/Austria -- New York, N.Y. -- Science. 2006 May 5;312(5774):734-7.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Institute of Molecular Biosciences, University of Graz, Austria.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/16675698" target="_blank"〉PubMed〈/a〉
    Keywords: Adipocytes/cytology/metabolism ; Adipose Tissue/anatomy & histology/*enzymology/metabolism ; Adipose Tissue, Brown/enzymology ; Animals ; Blood Glucose/metabolism ; Carboxylic Ester Hydrolases/deficiency/genetics/*metabolism ; Cell Size ; *Energy Metabolism ; Fatty Acids, Nonesterified/blood/metabolism ; Female ; Heart Failure/pathology ; Homeostasis ; Insulin/blood ; Isoproterenol/pharmacology ; Kidney/metabolism ; Lipase/deficiency/genetics/*metabolism ; Lipids/blood ; *Lipolysis/drug effects ; Male ; Mice ; Myocardium/metabolism/pathology ; Myocytes, Cardiac/cytology/metabolism ; Oxygen Consumption ; Testis/metabolism ; Thermogenesis ; Triglycerides/*metabolism ; Ventricular Dysfunction, Left/physiopathology
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 5
    Publication Date: 2010-05-08
    Description: Obesity results from chronic energy surplus and excess lipid storage in white adipose tissue (WAT). In contrast, brown adipose tissue (BAT) efficiently burns lipids through adaptive thermogenesis. Studying mouse models, we show that cyclooxygenase (COX)-2, a rate-limiting enzyme in prostaglandin (PG) synthesis, is a downstream effector of beta-adrenergic signaling in WAT and is required for the induction of BAT in WAT depots. PG shifted the differentiation of defined mesenchymal progenitors toward a brown adipocyte phenotype. Overexpression of COX-2 in WAT induced de novo BAT recruitment in WAT, increased systemic energy expenditure, and protected mice against high-fat diet-induced obesity. Thus, COX-2 appears integral to de novo BAT recruitment, which suggests that the PG pathway regulates systemic energy homeostasis.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Vegiopoulos, Alexandros -- Muller-Decker, Karin -- Strzoda, Daniela -- Schmitt, Iris -- Chichelnitskiy, Evgeny -- Ostertag, Anke -- Berriel Diaz, Mauricio -- Rozman, Jan -- Hrabe de Angelis, Martin -- Nusing, Rolf M -- Meyer, Carola W -- Wahli, Walter -- Klingenspor, Martin -- Herzig, Stephan -- New York, N.Y. -- Science. 2010 May 28;328(5982):1158-61. doi: 10.1126/science.1186034. Epub 2010 May 6.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Emmy Noether and Marie Curie Research Group Molecular Metabolic Control, German Cancer Research Center (DKFZ) Heidelberg, 69120 Heidelberg, Germany.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/20448152" target="_blank"〉PubMed〈/a〉
    Keywords: Adipocytes, Brown/cytology/*physiology ; Adipogenesis ; Adipose Tissue ; Adipose Tissue, Brown/cytology/*physiology ; Adipose Tissue, White/enzymology/*physiology ; Adrenergic beta-3 Receptor Agonists ; Adrenergic beta-Agonists/pharmacology ; Animals ; Body Weight ; Cyclooxygenase 2/*genetics/*metabolism ; Dietary Fats/administration & dosage ; Dioxoles/pharmacology ; *Energy Metabolism ; Female ; Gene Expression Regulation, Enzymologic ; Homeostasis ; Male ; Mesenchymal Stromal Cells/cytology ; Mice ; Mice, Inbred C57BL ; Mice, Obese ; Mice, Transgenic ; Norepinephrine/metabolism ; Obesity/etiology/prevention & control ; Oxygen Consumption ; Prostaglandins/*metabolism ; Receptors, Adrenergic, beta-3/metabolism ; Signal Transduction ; *Thermogenesis
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 6
    Publication Date: 2013-03-02
    Description: Prenatal infection and exposure to traumatizing experiences during peripuberty have each been associated with increased risk for neuropsychiatric disorders. Evidence is lacking for the cumulative impact of such prenatal and postnatal environmental challenges on brain functions and vulnerability to psychiatric disease. Here, we show in a translational mouse model that combined exposure to prenatal immune challenge and peripubertal stress induces synergistic pathological effects on adult behavioral functions and neurochemistry. We further demonstrate that the prenatal insult markedly increases the vulnerability of the pubescent offspring to brain immune changes in response to stress. Our findings reveal interactions between two adverse environmental factors that have individually been associated with neuropsychiatric disease and support theories that mental illnesses with delayed onsets involve multiple environmental hits.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Giovanoli, Sandra -- Engler, Harald -- Engler, Andrea -- Richetto, Juliet -- Voget, Mareike -- Willi, Roman -- Winter, Christine -- Riva, Marco A -- Mortensen, Preben B -- Feldon, Joram -- Schedlowski, Manfred -- Meyer, Urs -- New York, N.Y. -- Science. 2013 Mar 1;339(6123):1095-9. doi: 10.1126/science.1228261.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Physiology and Behavior Laboratory, Swiss Federal Institute of Technology (ETH) Zurich, 8603 Schwerzenbach, Switzerland.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/23449593" target="_blank"〉PubMed〈/a〉
    Keywords: Animals ; Cytokines/immunology ; Disease Models, Animal ; Female ; Humans ; Mental Disorders/*immunology ; Mice ; Mice, Inbred C57BL ; Poly I-C/immunology/pharmacology ; Pregnancy ; Prenatal Exposure Delayed Effects/*immunology/virology ; Puberty/*immunology ; Stress, Physiological/*immunology
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 7
    Publication Date: 2006-09-23
    Description: Protein aggregation is an established pathogenic mechanism in Alzheimer's disease, but little is known about the initiation of this process in vivo. Intracerebral injection of dilute, amyloid-beta (Abeta)-containing brain extracts from humans with Alzheimer's disease or beta-amyloid precursor protein (APP) transgenic mice induced cerebral beta-amyloidosis and associated pathology in APP transgenic mice in a time- and concentration-dependent manner. The seeding activity of brain extracts was reduced or abolished by Abeta immunodepletion, protein denaturation, or by Abeta immunization of the host. The phenotype of the exogenously induced amyloidosis depended on both the host and the source of the agent, suggesting the existence of polymorphic Abeta strains with varying biological activities reminiscent of prion strains.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Meyer-Luehmann, Melanie -- Coomaraswamy, Janaky -- Bolmont, Tristan -- Kaeser, Stephan -- Schaefer, Claudia -- Kilger, Ellen -- Neuenschwander, Anton -- Abramowski, Dorothee -- Frey, Peter -- Jaton, Anneliese L -- Vigouret, Jean-Marie -- Paganetti, Paolo -- Walsh, Dominic M -- Mathews, Paul M -- Ghiso, Jorge -- Staufenbiel, Matthias -- Walker, Lary C -- Jucker, Mathias -- NS45357/NS/NINDS NIH HHS/ -- RR-00165/RR/NCRR NIH HHS/ -- Wellcome Trust/United Kingdom -- New York, N.Y. -- Science. 2006 Sep 22;313(5794):1781-4.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Department of Cellular Neurology, Hertie-Institute for Clinical Brain Research, University of Tubingen, D-72076 Tubingen, Germany.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/16990547" target="_blank"〉PubMed〈/a〉
    Keywords: Aged ; Aged, 80 and over ; Aging ; Alzheimer Disease/metabolism ; Amyloid beta-Peptides/*administration & dosage/*analysis/chemistry/pharmacology ; Amyloid beta-Protein Precursor/*administration & dosage/pharmacology ; Amyloidosis/*metabolism/pathology ; Animals ; Brain/pathology ; Brain Chemistry ; Brain Diseases/*metabolism/pathology ; Female ; Hippocampus/*chemistry/pathology ; Humans ; Male ; Mice ; Mice, Transgenic ; Protein Denaturation ; Time Factors ; Tissue Extracts
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 8
    Publication Date: 1995-07-07
    Description: Cytokines and growth factors induce tyrosine phosphorylation of signal transducers and activators of transcription (STATs) that directly activate gene expression. Cells stably transformed by the Src oncogene tyrosine kinase were examined for STAT protein activation. Assays of electrophoretic mobility, DNA-binding specificity, and antigenicity indicated that Stat3 or a closely related STAT family member was constitutively activated by the Src oncoprotein. Induction of this DNA-binding activity was accompanied by tyrosine phosphorylation of Stat3 and correlated with Src transformation. These findings demonstrate that Src can activate STAT signaling pathways and raise the possibility that Stat3 contributes to oncogenesis by Src.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Yu, C L -- Meyer, D J -- Campbell, G S -- Larner, A C -- Carter-Su, C -- Schwartz, J -- Jove, R -- CA55652/CA/NCI NIH HHS/ -- DK34171/DK/NIDDK NIH HHS/ -- R01 DK034171/DK/NIDDK NIH HHS/ -- New York, N.Y. -- Science. 1995 Jul 7;269(5220):81-3.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Department of Microbiology and Immunology, University of Michigan Medical School, Ann Arbor 48109, USA.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/7541555" target="_blank"〉PubMed〈/a〉
    Keywords: Animals ; Base Sequence ; Cell Line, Transformed ; *Cell Transformation, Neoplastic ; DNA/*metabolism ; DNA-Binding Proteins/*metabolism ; Growth Inhibitors/pharmacology ; Interferon-gamma/pharmacology ; *Interleukin-6 ; Leukemia Inhibitory Factor ; Lymphokines/pharmacology ; Mice ; Molecular Sequence Data ; Oncogene Protein pp60(v-src)/*physiology ; Phosphorylation ; Phosphotyrosine ; STAT3 Transcription Factor ; *Signal Transduction ; Trans-Activators/*metabolism ; Tyrosine/analogs & derivatives/metabolism
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 9
    Publication Date: 2006-09-23
    Description: To resolve the controversy about messengers regulating KCNQ ion channels during phospholipase C-mediated suppression of current, we designed translocatable enzymes that quickly alter the phosphoinositide composition of the plasma membrane after application of a chemical cue. The KCNQ current falls rapidly to zero when phosphatidylinositol 4,5-bisphosphate [PtdIns(4,5)P2 or PI(4,5)P2] is depleted without changing Ca2+, diacylglycerol, or inositol 1,4,5-trisphosphate. Current rises by 30% when PI(4,5)P2 is overproduced and does not change when phosphatidylinositol 3,4,5-trisphosphate is raised. Hence, the depletion of PI(4,5)P2 suffices to suppress current fully, and other second messengers are not needed. Our approach is ideally suited to study biological signaling networks involving membrane phosphoinositides.〈br /〉〈br /〉〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3579521/" target="_blank"〉〈img src="https://static.pubmed.gov/portal/portal3rc.fcgi/4089621/img/3977009" border="0"〉〈/a〉   〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3579521/" target="_blank"〉This paper as free author manuscript - peer-reviewed and accepted for publication〈/a〉〈br /〉〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Suh, Byung-Chang -- Inoue, Takanari -- Meyer, Tobias -- Hille, Bertil -- AR17803/AR/NIAMS NIH HHS/ -- GM63702/GM/NIGMS NIH HHS/ -- MH64801/MH/NIMH NIH HHS/ -- NS08174/NS/NINDS NIH HHS/ -- R01 GM030179/GM/NIGMS NIH HHS/ -- R01 GM030179-24A1/GM/NIGMS NIH HHS/ -- R01 GM030179-25/GM/NIGMS NIH HHS/ -- R01 GM063702/GM/NIGMS NIH HHS/ -- R01 MH064801/MH/NIMH NIH HHS/ -- R01 NS008174/NS/NINDS NIH HHS/ -- New York, N.Y. -- Science. 2006 Dec 1;314(5804):1454-7. Epub 2006 Sep 21.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Department of Physiology and Biophysics, University of Washington School of Medicine, Seattle, WA 98195, USA.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/16990515" target="_blank"〉PubMed〈/a〉
    Keywords: Animals ; Calcium/metabolism ; Cell Line ; Cell Membrane/*metabolism ; Diglycerides/metabolism ; Dimerization ; Humans ; *Ion Channel Gating ; KCNQ Potassium Channels/*metabolism ; KCNQ2 Potassium Channel/metabolism ; KCNQ3 Potassium Channel/metabolism ; Mice ; NIH 3T3 Cells ; Oxotremorine/analogs & derivatives/pharmacology ; Phosphatidylinositol 4,5-Diphosphate/*metabolism ; Phosphoric Monoester Hydrolases/metabolism ; Phosphorylation ; Recombinant Fusion Proteins/metabolism ; Second Messenger Systems ; Sirolimus/analogs & derivatives/pharmacology
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 10
    Publication Date: 2006-11-11
    Description: Many signaling, cytoskeletal, and transport proteins have to be localized to the plasma membrane (PM) in order to carry out their function. We surveyed PM-targeting mechanisms by imaging the subcellular localization of 125 fluorescent protein-conjugated Ras, Rab, Arf, and Rho proteins. Out of 48 proteins that were PM-localized, 37 contained clusters of positively charged amino acids. To test whether these polybasic clusters bind negatively charged phosphatidylinositol 4,5-bisphosphate [PI(4,5)P2] lipids, we developed a chemical phosphatase activation method to deplete PM PI(4,5)P2. Unexpectedly, proteins with polybasic clusters dissociated from the PM only when both PI(4,5)P2 and phosphatidylinositol 3,4,5-trisphosphate [PI(3,4,5)P3] were depleted, arguing that both lipid second messengers jointly regulate PM targeting.〈br /〉〈br /〉〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3579512/" target="_blank"〉〈img src="https://static.pubmed.gov/portal/portal3rc.fcgi/4089621/img/3977009" border="0"〉〈/a〉   〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3579512/" target="_blank"〉This paper as free author manuscript - peer-reviewed and accepted for publication〈/a〉〈br /〉〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Heo, Won Do -- Inoue, Takanari -- Park, Wei Sun -- Kim, Man Lyang -- Park, Byung Ouk -- Wandless, Thomas J -- Meyer, Tobias -- R01 GM030179/GM/NIGMS NIH HHS/ -- R01 GM030179-24A1/GM/NIGMS NIH HHS/ -- R01 GM030179-25/GM/NIGMS NIH HHS/ -- R01 GM063702/GM/NIGMS NIH HHS/ -- R01 MH064801/MH/NIMH NIH HHS/ -- New York, N.Y. -- Science. 2006 Dec 1;314(5804):1458-61. Epub 2006 Nov 9.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Department of Molecular Pharmacology, 318 Campus Drive, Clark Building, Stanford University Medical School, Stanford, CA 94305, USA.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/17095657" target="_blank"〉PubMed〈/a〉
    Keywords: ADP-Ribosylation Factors/chemistry/metabolism ; Amino Acid Motifs ; Amino Acid Sequence ; Animals ; Cell Membrane/*metabolism ; GTP Phosphohydrolases/chemistry/*metabolism ; HeLa Cells ; Humans ; Hydrophobic and Hydrophilic Interactions ; Kinetics ; Mice ; Molecular Sequence Data ; NIH 3T3 Cells ; Phosphatidylinositol 4,5-Diphosphate/*metabolism ; Phosphatidylinositol Phosphates/*metabolism ; Second Messenger Systems ; Signal Transduction ; Static Electricity ; rab GTP-Binding Proteins/chemistry/metabolism ; ras Proteins/chemistry/metabolism ; rho GTP-Binding Proteins/metabolism
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...