ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
Filter
  • American Association for the Advancement of Science (AAAS)  (5)
  • Institute of Electrical and Electronics Engineers  (1)
Collection
  • 1
    Publication Date: 2014-11-02
    Description: Emerging infectious diseases are reducing biodiversity on a global scale. Recently, the emergence of the chytrid fungus Batrachochytrium salamandrivorans resulted in rapid declines in populations of European fire salamanders. Here, we screened more than 5000 amphibians from across four continents and combined experimental assessment of pathogenicity with phylogenetic methods to estimate the threat that this infection poses to amphibian diversity. Results show that B. salamandrivorans is restricted to, but highly pathogenic for, salamanders and newts (Urodela). The pathogen likely originated and remained in coexistence with a clade of salamander hosts for millions of years in Asia. As a result of globalization and lack of biosecurity, it has recently been introduced into naive European amphibian populations, where it is currently causing biodiversity loss.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Martel, A -- Blooi, M -- Adriaensen, C -- Van Rooij, P -- Beukema, W -- Fisher, M C -- Farrer, R A -- Schmidt, B R -- Tobler, U -- Goka, K -- Lips, K R -- Muletz, C -- Zamudio, K R -- Bosch, J -- Lotters, S -- Wombwell, E -- Garner, T W J -- Cunningham, A A -- Spitzen-van der Sluijs, A -- Salvidio, S -- Ducatelle, R -- Nishikawa, K -- Nguyen, T T -- Kolby, J E -- Van Bocxlaer, I -- Bossuyt, F -- Pasmans, F -- Wellcome Trust/United Kingdom -- New York, N.Y. -- Science. 2014 Oct 31;346(6209):630-1. doi: 10.1126/science.1258268.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Department of Pathology, Bacteriology and Avian Diseases, Faculty of Veterinary Medicine, Ghent University, Salisburylaan 133, B-9820 Merelbeke, Belgium. an.martel@ugent.be. ; Department of Pathology, Bacteriology and Avian Diseases, Faculty of Veterinary Medicine, Ghent University, Salisburylaan 133, B-9820 Merelbeke, Belgium. Centre for Research and Conservation, Royal Zoological Society of Antwerp, Koningin Astridplein 26, Antwerp, Belgium. ; Department of Pathology, Bacteriology and Avian Diseases, Faculty of Veterinary Medicine, Ghent University, Salisburylaan 133, B-9820 Merelbeke, Belgium. ; CIBIO/InBIO, Centro de Investigacao em Biodiversidade e Recursos Geneticos da Universidade do Porto, Instituto de Ciencias Agrarias de Vairao, Rua Padre Armando Quintas, Vairao, Portugal. ; Department of Infectious Disease Epidemiology, Imperial College London, Norfolk Place, London W2 1PG, UK. ; Genome Sequencing and Analysis Program, The Broad Institute of MIT and Harvard, Cambridge, MA 02142, USA. ; Koordinationsstelle fur amphibien- und reptilienschutz in der Schweiz (KARCH), Passage Maximilien-de-Meuron 6, 2000 Neuchatel, Switzerland. Institut fur Evolutionsbiologie und Umweltwissenschaften, Universitat Zurich. Winterthurerstrasse 190, 8057 Zurich, Switzerland. ; Invasive Alien Species Research Team, National Institute for Environment Studies, 16-2 Onogawa, Tsukuba, Ibaraki 305-8506, Japan. ; Department of Biology, University of Maryland, College Park, MD 20742, USA. ; Department of Ecology and Evolutionary Biology, Cornell University, Ithaca, NY 14853, USA. ; Museo Nacional de Ciencias Naturales, Consejo Superior de Investigaciones cientificas (CSIC), Jose Gutierrez Abascal 2, 28006 Madrid, Spain. ; Biogeography Department, Trier University, 54286 Trier, Germany. ; Durrell Institute of Conservation and Ecology, University of Kent, Kent CT2 7NR, UK. Institute of Zoology, Zoological Society of London, London NW1 4RY, UK. ; Institute of Zoology, Zoological Society of London, London NW1 4RY, UK. ; Reptile, Amphibian and Fish Conservation the Netherlands (RAVON), Post Office Box 1413, 6501 BK Nijmegen, Netherlands. ; Department of Earth Science, Environmental and Life (Di.S.T.A.V.), University of Genova, Corso Europa 26, I-16132 Genova, Italy. ; Graduate School of Human and Environmental Studies, Kyoto University, Yoshida Nihonmatsu-cho, Sakyo-ku, Kyoto 606-8501, Japan. ; Vietnam National Museum of Nature, Vietnam Academy of Science and Technology, 18 Hoang Quoc Viet, Cau Giay, Hanoi, Vietnam. ; James Cook University, One Health Research Group, School of Public Health, Tropical Medicine and Rehabilitation Sciences, Townsville, Queensland, Australia. ; Amphibian Evolution Lab, Biology Department, Vrije Universiteit Brussel, Pleinlaan 2, 1050 Brussels, Belgium.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/25359973" target="_blank"〉PubMed〈/a〉
    Keywords: Animals ; Biodiversity ; *Chytridiomycota ; Communicable Diseases, Emerging/microbiology/*veterinary ; *Endangered Species ; Mycoses/microbiology/*veterinary ; Phylogeny ; Urodela/classification/*microbiology
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 2
    Publication Date: 2018
    Description: 〈p〉Topological defects have been explored in different fields ranging from condensed matter physics and particle physics to cosmology. In condensed matter, strong coupling between charge, spin, and lattice degrees of freedom brings about emergent excitations with topological characteristics at low energies. One-dimensional (1D) systems with degenerate dimerization patterns are typical stages for the generation of topological defects, dubbed "solitons"; for instance, charged solitons are responsible for high electrical conductivity in doped 〈i〉trans〈/i〉-polyacetylene. Here, we provide evidence based on a nuclear magnetic resonance (NMR) study for mobile spin solitons deconfined from a strongly charge-lattice–coupled spin-singlet ferroelectric order in a quasi-1D organic charge-transfer complex. The NMR spectral shift and relaxation rate associated with static and dynamic spin susceptibilities indicate that the ferroelectric order is violated by dilute solitonic spin excitations, which were further demonstrated to move diffusively by the frequency dependence of the relaxation rate. The traveling solitons revealed here may promise the emergence of anomalous electrical and thermal transport.〈/p〉
    Electronic ISSN: 2375-2548
    Topics: Natural Sciences in General
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 3
    Publication Date: 2018-12-01
    Description: Topological defects have been explored in different fields ranging from condensed matter physics and particle physics to cosmology. In condensed matter, strong coupling between charge, spin, and lattice degrees of freedom brings about emergent excitations with topological characteristics at low energies. One-dimensional (1D) systems with degenerate dimerization patterns are typical stages for the generation of topological defects, dubbed "solitons"; for instance, charged solitons are responsible for high electrical conductivity in doped trans -polyacetylene. Here, we provide evidence based on a nuclear magnetic resonance (NMR) study for mobile spin solitons deconfined from a strongly charge-lattice–coupled spin-singlet ferroelectric order in a quasi-1D organic charge-transfer complex. The NMR spectral shift and relaxation rate associated with static and dynamic spin susceptibilities indicate that the ferroelectric order is violated by dilute solitonic spin excitations, which were further demonstrated to move diffusively by the frequency dependence of the relaxation rate. The traveling solitons revealed here may promise the emergence of anomalous electrical and thermal transport.
    Electronic ISSN: 2375-2548
    Topics: Natural Sciences in General
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 4
    Publication Date: 2008-02-02
    Description: Cathepsin K was originally identified as an osteoclast-specific lysosomal protease, the inhibitor of which has been considered might have therapeutic potential. We show that inhibition of cathepsin K could potently suppress autoimmune inflammation of the joints as well as osteoclastic bone resorption in autoimmune arthritis. Furthermore, cathepsin K-/- mice were resistant to experimental autoimmune encephalomyelitis. Pharmacological inhibition or targeted disruption of cathepsin K resulted in defective Toll-like receptor 9 signaling in dendritic cells in response to unmethylated CpG DNA, which in turn led to attenuated induction of T helper 17 cells, without affecting the antigen-presenting ability of dendritic cells. These results suggest that cathepsin K plays an important role in the immune system and may serve as a valid therapeutic target in autoimmune diseases.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Asagiri, Masataka -- Hirai, Toshitake -- Kunigami, Toshihiro -- Kamano, Shunya -- Gober, Hans-Jurgen -- Okamoto, Kazuo -- Nishikawa, Keizo -- Latz, Eicke -- Golenbock, Douglas T -- Aoki, Kazuhiro -- Ohya, Keiichi -- Imai, Yuuki -- Morishita, Yasuyuki -- Miyazono, Kohei -- Kato, Shigeaki -- Saftig, Paul -- Takayanagi, Hiroshi -- New York, N.Y. -- Science. 2008 Feb 1;319(5863):624-7. doi: 10.1126/science.1150110.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Department of Cell Signaling, Graduate School, Tokyo Medical and Dental University, Tokyo 113-8549, Japan.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/18239127" target="_blank"〉PubMed〈/a〉
    Keywords: Animals ; Antigens, CD/metabolism ; Arthritis, Experimental/drug therapy/*immunology/*metabolism ; Autoimmune Diseases/drug therapy/immunology/*metabolism ; Bone Resorption ; Cathepsin K ; Cathepsins/antagonists & inhibitors/deficiency/*metabolism ; Cytokines/metabolism ; DNA/immunology/metabolism ; Dendritic Cells/drug effects/immunology ; Dinucleoside Phosphates/immunology/metabolism ; Encephalomyelitis, Autoimmune, Experimental/immunology/metabolism ; Endosomes/metabolism ; Freund's Adjuvant/immunology ; Lymphocyte Activation/drug effects ; Male ; Mice ; Osteoporosis/drug therapy ; Protease Inhibitors/pharmacology ; Rats ; *Signal Transduction ; T-Lymphocytes/drug effects/enzymology/immunology ; Toll-Like Receptor 9/*metabolism
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 5
    Publication Date: 2015-02-14
    Description: The C-terminal region of Clostridium perfringens enterotoxin (C-CPE) can bind to specific claudins, resulting in the disintegration of tight junctions (TJs) and an increase in the paracellular permeability across epithelial cell sheets. Here we present the structure of mammalian claudin-19 in complex with C-CPE at 3.7 A resolution. The structure shows that C-CPE forms extensive hydrophobic and hydrophilic interactions with the two extracellular segments of claudin-19. The claudin-19/C-CPE complex shows no density of a short extracellular helix that is critical for claudins to assemble into TJ strands. The helix displacement may thus underlie C-CPE-mediated disassembly of TJs.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Saitoh, Yasunori -- Suzuki, Hiroshi -- Tani, Kazutoshi -- Nishikawa, Kouki -- Irie, Katsumasa -- Ogura, Yuki -- Tamura, Atsushi -- Tsukita, Sachiko -- Fujiyoshi, Yoshinori -- New York, N.Y. -- Science. 2015 Feb 13;347(6223):775-8. doi: 10.1126/science.1261833.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Cellular and Structural Physiology Institute, Nagoya University, Chikusa, Nagoya 464-8601, Japan. Department of Basic Medical Science, Graduate School of Pharmaceutical Science, Nagoya University, Chikusa, Nagoya 464-8601, Japan. ; Cellular and Structural Physiology Institute, Nagoya University, Chikusa, Nagoya 464-8601, Japan. ; Laboratory of Biological Science, Graduate School of Frontier Biosciences and Graduate School of Medicine, Osaka University, Suita, Osaka 565-0871, Japan. ; Cellular and Structural Physiology Institute, Nagoya University, Chikusa, Nagoya 464-8601, Japan. Department of Basic Medical Science, Graduate School of Pharmaceutical Science, Nagoya University, Chikusa, Nagoya 464-8601, Japan. yoshi@cespi.nagoya-u.ac.jp.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/25678664" target="_blank"〉PubMed〈/a〉
    Keywords: Animals ; Claudins/*chemistry ; Enterotoxins/*chemistry ; Hydrophobic and Hydrophilic Interactions ; Mice ; Protein Structure, Secondary ; Tight Junctions/chemistry/*ultrastructure
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 6
    Publication Date: 2001-01-01
    Print ISSN: 0196-2892
    Electronic ISSN: 1558-0644
    Topics: Architecture, Civil Engineering, Surveying , Geography
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...