ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
Filter
  • Mutation  (10)
  • Base Sequence  (8)
  • American Association for the Advancement of Science (AAAS)  (18)
  • American Institute of Physics (AIP)
Collection
Publisher
  • 1
    facet.materialart.
    Unknown
    American Association for the Advancement of Science (AAAS)
    Publication Date: 2000-09-29
    Description: Events that stall bacterial protein synthesis activate the ssrA-tagging machinery, resulting in resumption of translation and addition of an 11-residue peptide to the carboxyl terminus of the nascent chain. This ssrA-encoded peptide tag marks the incomplete protein for degradation by the energy-dependent ClpXP protease. Here, a ribosome-associated protein, SspB, was found to bind specifically to ssrA-tagged proteins and to enhance recognition of these proteins by ClpXP. Cells with an sspB mutation are defective in degrading ssrA-tagged proteins, demonstrating that SspB is a specificity-enhancing factor for ClpXP that controls substrate choice.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Levchenko, I -- Seidel, M -- Sauer, R T -- Baker, T A -- AI-16892/AI/NIAID NIH HHS/ -- New York, N.Y. -- Science. 2000 Sep 29;289(5488):2354-6.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Department of Biology and Howard Hughes Medical Institute, Building 68, Room 523, Massachusetts Institute of Technology, 77 Massachusetts Avenue, Cambridge, MA 02139, USA.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/11009422" target="_blank"〉PubMed〈/a〉
    Keywords: Adenosine Triphosphatases/*metabolism ; Bacterial Proteins/genetics/*metabolism ; Endopeptidase Clp ; Escherichia coli/enzymology/*metabolism ; *Escherichia coli Proteins ; Green Fluorescent Proteins ; Luminescent Proteins/metabolism ; Mutation ; Oligopeptides/chemistry/genetics/*metabolism ; Operon ; Ribosomes/metabolism ; Serine Endopeptidases/*metabolism ; Substrate Specificity
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 2
    Publication Date: 1989-12-08
    Description: The fragile X syndrome is the most common cause of familial mental retardation. Genetic counseling and gene isolation are hampered by a lack of DNA markers close to the disease locus. Two somatic cell hybrids that each contain a human X chromosome with a breakpoint close to the fragile X locus have been characterized. A new DNA marker (DXS296) lies between the chromosome breakpoints and is the closest marker to the fragile X locus yet reported. The Hunter syndrome gene, which causes iduronate sulfatase deficiency, is located at the X chromosome breakpoint that is distal to this new marker, thus localizing the Hunter gene distal to the fragile X locus.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Suthers, G K -- Callen, D F -- Hyland, V J -- Kozman, H M -- Baker, E -- Eyre, H -- Harper, P S -- Roberts, S H -- Hors-Cayla, M C -- Davies, K E -- New York, N.Y. -- Science. 1989 Dec 8;246(4935):1298-300.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Department of Histopathology, Adelaide Children's Hospital, Australia.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/2573953" target="_blank"〉PubMed〈/a〉
    Keywords: Animals ; Chromosome Mapping ; Female ; Fragile X Syndrome/*genetics ; Genetic Counseling ; *Genetic Linkage ; *Genetic Markers ; Genomic Library ; Humans ; Hybrid Cells ; Likelihood Functions ; Mice ; Mucopolysaccharidosis II/genetics ; Mutation ; Nucleic Acid Hybridization ; Polymorphism, Restriction Fragment Length ; Sex Chromosome Aberrations/*genetics ; Translocation, Genetic
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 3
    Publication Date: 1991-06-21
    Description: The sequence of a Pst I restriction fragment was determined that demonstrate instability in fragile X syndrome pedigrees. The region of instability was localized to a trinucleotide repeat p(CCG)n. The sequence flanking this repeat were identical in normal and affected individuals. The breakpoints in two somatic cell hybrids constructed to break at the fragile site also mapped to this repeat sequence. The repeat exhibits instability both when cloned in a nonhomologous host and after amplification by the polymerase chain reaction. These results suggest variation in the trinucleotide repeat copy number as the molecular basis for the instability and possibly the fragile site. This would account for the observed properties of this region in vivo and in vitro.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Kremer, E J -- Pritchard, M -- Lynch, M -- Yu, S -- Holman, K -- Baker, E -- Warren, S T -- Schlessinger, D -- Sutherland, G R -- Richards, R I -- New York, N.Y. -- Science. 1991 Jun 21;252(5013):1711-4.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Department of Cytogenetics and Molecular Genetics, Adelaide Children's Hospital, South Australia.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/1675488" target="_blank"〉PubMed〈/a〉
    Keywords: Base Sequence ; Blotting, Southern ; Chromosome Mapping ; Fragile X Syndrome/*genetics ; Humans ; Molecular Sequence Data ; Pedigree ; Polymerase Chain Reaction ; Polymorphism, Restriction Fragment Length ; Repetitive Sequences, Nucleic Acid ; Restriction Mapping ; X Chromosome/ultrastructure
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 4
    Publication Date: 1992-11-27
    Description: The cystic fibrosis gene product (CFTR) is a complex protein that functions as an adenosine 3,5-monophosphate (cAMP)-stimulated ion channel and possibly as a regulator of intracellular processes. In order to determine whether the CFTR molecule contains a functional aqueous pathway, anion, water, and urea transport were measured in Xenopus oocytes expressing CFTR. Cyclic AMP agonists induced a Cl- conductance of 94 microsiemens and an increase in water permeability of 4 x 10(-4) centimeter per second that was inhibited by a Cl- channel blocker and was dependent on anion composition. CFTR has a calculated single channel water conductance of 9 x 10(-13) cubic centimeter per second, suggesting a pore-like aqueous pathway. Oocytes expressing CFTR also showed cAMP-stimulated transport of urea but not the larger solute sucrose. Thus CFTR contains a cAMP-stimulated aqueous pore that can transport anions, water, and small solutes. The results also provide functional evidence for water movement through an ion channel.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Hasegawa, H -- Skach, W -- Baker, O -- Calayag, M C -- Lingappa, V -- Verkman, A S -- DK35124/DK/NIDDK NIH HHS/ -- DK43840/DK/NIDDK NIH HHS/ -- HL42368/HL/NHLBI NIH HHS/ -- etc. -- New York, N.Y. -- Science. 1992 Nov 27;258(5087):1477-9.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Department of Medicine, University of California, San Francisco 94143-0532.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/1279809" target="_blank"〉PubMed〈/a〉
    Keywords: Animals ; Base Sequence ; Biological Transport/physiology ; Chlorides/metabolism ; Cyclic AMP/physiology ; Cystic Fibrosis Transmembrane Conductance Regulator ; Female ; Humans ; In Vitro Techniques ; Ion Channels/*physiology ; Membrane Proteins/*physiology ; Molecular Sequence Data ; Oocytes ; Urea/metabolism ; Water/metabolism ; Xenopus
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 5
    Publication Date: 2006-11-25
    Description: For microbial pathogens, phylogeographic differentiation seems to be relatively common. However, the neutral population structure of Salmonella enterica serovar Typhi reflects the continued existence of ubiquitous haplotypes over millennia. In contrast, clinical use of fluoroquinolones has yielded at least 15 independent gyrA mutations within a decade and stimulated clonal expansion of haplotype H58 in Asia and Africa. Yet, antibiotic-sensitive strains and haplotypes other than H58 still persist despite selection for antibiotic resistance. Neutral evolution in Typhi appears to reflect the asymptomatic carrier state, and adaptive evolution depends on the rapid transmission of phenotypic changes through acute infections.〈br /〉〈br /〉〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC2652035/" target="_blank"〉〈img src="https://static.pubmed.gov/portal/portal3rc.fcgi/4089621/img/3977009" border="0"〉〈/a〉   〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC2652035/" target="_blank"〉This paper as free author manuscript - peer-reviewed and accepted for publication〈/a〉〈br /〉〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Roumagnac, Philippe -- Weill, Francois-Xavier -- Dolecek, Christiane -- Baker, Stephen -- Brisse, Sylvain -- Chinh, Nguyen Tran -- Le, Thi Anh Hong -- Acosta, Camilo J -- Farrar, Jeremy -- Dougan, Gordon -- Achtman, Mark -- 076962/Wellcome Trust/United Kingdom -- Wellcome Trust/United Kingdom -- New York, N.Y. -- Science. 2006 Nov 24;314(5803):1301-4.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Max-Planck-Institut fur Infektionsbiologie, Department of Molecular Biology, Chariteplatz 1, 10117 Berlin, Germany.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/17124322" target="_blank"〉PubMed〈/a〉
    Keywords: Adaptation, Physiological ; Africa ; Alleles ; Anti-Bacterial Agents/pharmacology/therapeutic use ; Asia ; *Biological Evolution ; Carrier State/*microbiology ; DNA Gyrase/genetics ; Drug Resistance, Bacterial ; Drug Resistance, Multiple, Bacterial ; Fluoroquinolones/pharmacology/therapeutic use ; *Genes, Bacterial ; Genetic Variation ; Haplotypes ; Humans ; Molecular Sequence Data ; Mutation ; Polymorphism, Genetic ; Polymorphism, Single Nucleotide ; Salmonella typhi/drug effects/*genetics ; Selection, Genetic ; Typhoid Fever/drug therapy/*microbiology
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 6
    Publication Date: 2011-05-14
    Description: We describe a general computational method for designing proteins that bind a surface patch of interest on a target macromolecule. Favorable interactions between disembodied amino acid residues and the target surface are identified and used to anchor de novo designed interfaces. The method was used to design proteins that bind a conserved surface patch on the stem of the influenza hemagglutinin (HA) from the 1918 H1N1 pandemic virus. After affinity maturation, two of the designed proteins, HB36 and HB80, bind H1 and H5 HAs with low nanomolar affinity. Further, HB80 inhibits the HA fusogenic conformational changes induced at low pH. The crystal structure of HB36 in complex with 1918/H1 HA revealed that the actual binding interface is nearly identical to that in the computational design model. Such designed binding proteins may be useful for both diagnostics and therapeutics.〈br /〉〈br /〉〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3164876/" target="_blank"〉〈img src="https://static.pubmed.gov/portal/portal3rc.fcgi/4089621/img/3977009" border="0"〉〈/a〉   〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3164876/" target="_blank"〉This paper as free author manuscript - peer-reviewed and accepted for publication〈/a〉〈br /〉〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Fleishman, Sarel J -- Whitehead, Timothy A -- Ekiert, Damian C -- Dreyfus, Cyrille -- Corn, Jacob E -- Strauch, Eva-Maria -- Wilson, Ian A -- Baker, David -- AI057141/AI/NIAID NIH HHS/ -- AI058113/AI/NIAID NIH HHS/ -- GM080209/GM/NIGMS NIH HHS/ -- P01 AI058113/AI/NIAID NIH HHS/ -- P01 AI058113-07/AI/NIAID NIH HHS/ -- Y1-CO-1020/CO/NCI NIH HHS/ -- Y1-GM-1104/GM/NIGMS NIH HHS/ -- Howard Hughes Medical Institute/ -- New York, N.Y. -- Science. 2011 May 13;332(6031):816-21. doi: 10.1126/science.1202617.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Department of Biochemistry, University of Washington, Seattle, WA 98195, USA.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/21566186" target="_blank"〉PubMed〈/a〉
    Keywords: Algorithms ; Amino Acid Sequence ; Binding Sites ; Computational Biology ; *Computer Simulation ; Hemagglutinin Glycoproteins, Influenza Virus/chemistry/*metabolism ; Hydrogen Bonding ; Hydrogen-Ion Concentration ; Hydrophobic and Hydrophilic Interactions ; *Models, Molecular ; Molecular Sequence Data ; Mutation ; Peptide Library ; Protein Binding ; Protein Conformation ; *Protein Engineering ; Protein Interaction Domains and Motifs ; Protein Structure, Secondary ; Proteins/*chemistry/genetics/*metabolism ; Software
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 7
    facet.materialart.
    Unknown
    American Association for the Advancement of Science (AAAS)
    Publication Date: 1998-09-25
    Description: REVIEW There is substantial cytogenetic data indicating that the process of sex determination can evolve relatively rapidly. However, recent molecular studies on the evolution of the regulatory genes that control sex determination in the insect Drosophila melanogaster, the nematode Caenorhabditis elegans, and mammals suggest that, although certain sex determination regulatory genes have evolved relatively rapidly, other sex determination regulatory genes are quite conserved. Thus, studies of the evolution of sex determination, a process that appears to have elements that undergo substantial evolutionary change and others that may be conserved, could provide substantial insights into the kinds of forces that both drive and constrain the evolution of developmental hierarchies.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Marin, I -- Baker, B S -- New York, N.Y. -- Science. 1998 Sep 25;281(5385):1990-4.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Department of Biological Sciences, Stanford University, Stanford, CA 94305, USA.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/9748152" target="_blank"〉PubMed〈/a〉
    Keywords: Animals ; *Biological Evolution ; Female ; Gene Expression Regulation ; Male ; Mutation ; Selection, Genetic ; Sex Chromosomes/genetics ; *Sex Determination Processes
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 8
    Publication Date: 2006-07-01
    Description: The clock gene period-4 (prd-4) in Neurospora was identified by a single allele displaying shortened circadian period and altered temperature compensation. Positional cloning followed by functional tests show that PRD-4 is an ortholog of mammalian checkpoint kinase 2 (Chk2). Expression of prd-4 is regulated by the circadian clock and, reciprocally, PRD-4 physically interacts with the clock component FRQ, promoting its phosphorylation. DNA-damaging agents can reset the clock in a manner that depends on time of day, and this resetting is dependent on PRD-4. Thus, prd-4, the Neurospora Chk2, identifies a molecular link that feeds back conditionally from circadian output to input and the cell cycle.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Pregueiro, Antonio M -- Liu, Qiuyun -- Baker, Christopher L -- Dunlap, Jay C -- Loros, Jennifer J -- MH44651/MH/NIMH NIH HHS/ -- P01 GM068087/GM/NIGMS NIH HHS/ -- R01 GM034985/GM/NIGMS NIH HHS/ -- R37GM34985/GM/NIGMS NIH HHS/ -- New York, N.Y. -- Science. 2006 Aug 4;313(5787):644-9. Epub 2006 Jun 29.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Department of Genetics, Dartmouth Medical School, Hanover, NH 03755, USA.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/16809488" target="_blank"〉PubMed〈/a〉
    Keywords: Amino Acid Sequence ; *Cell Cycle ; Checkpoint Kinase 2 ; *Circadian Rhythm ; Cloning, Molecular ; DNA Damage ; Feedback, Physiological ; Fungal Proteins/chemistry/genetics/metabolism ; Gene Expression Regulation, Fungal ; Genes, Fungal ; Methyl Methanesulfonate/pharmacology ; Molecular Sequence Data ; Mutation ; Neurospora/*enzymology/genetics ; Neurospora crassa/cytology/*enzymology/*physiology ; Phosphorylation ; Protein-Serine-Threonine Kinases/chemistry/*genetics/*metabolism
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 9
    Publication Date: 1995-12-15
    Description: Ubiquitin is a highly conserved polypeptide found in all eukaryotes. The major function of ubiquitin is to target proteins for complete or partial degradation by a multisubunit protein complex called the proteasome. Here, the Drosophila fat facets gene, which is required for the appropriate determination of particular cells in the fly eye, was shown to encode a ubiquitin-specific protease (Ubp), an enzyme that cleaves ubiquitin from ubiquitin-protein conjugates. The Fat facets protein (FAF) acts as a regulatory Ubp that prevents degradation of its substrate by the proteasome. Flies bearing fat facets gene mutations were used to show that a Ubp is cell type--and substrate-specific and a regulator of cell fate decisions in a multicellular organism.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Huang, Y -- Baker, R T -- Fischer-Vize, J A -- New York, N.Y. -- Science. 1995 Dec 15;270(5243):1828-31.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Department of Zoology, University of Texas, Austin 78712, USA.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/8525378" target="_blank"〉PubMed〈/a〉
    Keywords: Amino Acid Sequence ; Animals ; Base Sequence ; *Cell Differentiation/genetics ; Cysteine/metabolism ; Drosophila/embryology/enzymology/genetics ; Endopeptidases/genetics/*metabolism ; Escherichia coli ; Eye/embryology ; Molecular Sequence Data ; Mutagenesis, Site-Directed ; Oligodeoxyribonucleotides ; Recombinant Fusion Proteins/genetics/metabolism ; Ubiquitins/*metabolism ; beta-Galactosidase/genetics
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 10
    Publication Date: 1993-06-04
    Description: Biological variability of human immunodeficiency virus type-1 (HIV-1) is involved in the pathogenesis of acquired immunodeficiency syndrome (AIDS). Syncytium-inducing (SI) HIV-1 variants emerge in 50 percent of infected individuals during infection, preceding accelerated CD4+ T cell loss and rapid progression to AIDS. The V1 to V2 and V3 region of the viral envelope glycoprotein gp120 contained the major determinants of SI capacity. The configuration of a hypervariable locus in the V2 domain appeared to be predictive for non-SI to SI phenotype conversion. Early prediction of HIV-1 phenotype evolution may be useful for clinical monitoring and treatment of asymptomatic infection.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Groenink, M -- Fouchier, R A -- Broersen, S -- Baker, C H -- Koot, M -- van't Wout, A B -- Huisman, H G -- Miedema, F -- Tersmette, M -- Schuitemaker, H -- New York, N.Y. -- Science. 1993 Jun 4;260(5113):1513-6.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Department of Clinical Viro-Immunology, Central Laboratory of the Netherlands Red Cross Blood Transfusion Service, Amsterdam.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/8502996" target="_blank"〉PubMed〈/a〉
    Keywords: Acquired Immunodeficiency Syndrome/microbiology ; Amino Acid Sequence ; Base Sequence ; Biological Evolution ; Consensus Sequence ; Genetic Variation ; Giant Cells/microbiology ; HIV Envelope Protein gp120/*chemistry ; HIV Seropositivity/microbiology ; HIV-1/*chemistry/*genetics/pathogenicity ; Humans ; Male ; Molecular Sequence Data ; Phenotype ; Protein Conformation ; Recombination, Genetic
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...