ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
Filter
  • Molecular Sequence Data  (29)
  • American Association for the Advancement of Science (AAAS)  (29)
  • American Institute of Physics (AIP)
  • Cambridge University Press
Collection
Publisher
  • American Association for the Advancement of Science (AAAS)  (29)
  • American Institute of Physics (AIP)
  • Cambridge University Press
  • Nature Publishing Group (NPG)  (3)
  • 11
    Publication Date: 2013-10-05
    Description: Most models of gene duplication assume that the ancestral functions of the preduplication gene are independent and can therefore be neatly partitioned between descendant paralogs. However, many gene products, such as transcriptional regulators, are components within cooperative assemblies; here, we show that a natural consequence of duplication and divergence of such proteins can be competitive interference between the paralogs. Our example is based on the duplication of the essential MADS-box transcriptional regulator Mcm1, which is found in all fungi and regulates a large set of genes. We show that a set of historical amino acid sequence substitutions minimized paralog interference in contemporary species and, in doing so, increased the molecular complexity of this gene regulatory network. We propose that paralog interference is a common constraint on gene duplicate evolution, and its resolution, which can generate additional regulatory complexity, is needed to stabilize duplicated genes in the genome.〈br /〉〈br /〉〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3911913/" target="_blank"〉〈img src="https://static.pubmed.gov/portal/portal3rc.fcgi/4089621/img/3977009" border="0"〉〈/a〉   〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3911913/" target="_blank"〉This paper as free author manuscript - peer-reviewed and accepted for publication〈/a〉〈br /〉〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Baker, Christopher R -- Hanson-Smith, Victor -- Johnson, Alexander D -- F32 GM108299/GM/NIGMS NIH HHS/ -- R01 GM037049/GM/NIGMS NIH HHS/ -- R01 GM057049/GM/NIGMS NIH HHS/ -- New York, N.Y. -- Science. 2013 Oct 4;342(6154):104-8. doi: 10.1126/science.1240810.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Department of Immunology and Microbiology, University of California, San Francisco, CA 94143, USA.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/24092741" target="_blank"〉PubMed〈/a〉
    Keywords: Amino Acid Sequence ; Arginine/genetics ; Candida albicans/genetics ; *Evolution, Molecular ; *Gene Duplication ; *Gene Regulatory Networks ; Kluyveromyces/genetics ; Minichromosome Maintenance 1 Protein/*genetics ; Molecular Sequence Data ; Saccharomyces cerevisiae/genetics ; Sequence Deletion ; *Transcription, Genetic
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 12
    Publication Date: 2003-11-25
    Description: A major challenge of computational protein design is the creation of novel proteins with arbitrarily chosen three-dimensional structures. Here, we used a general computational strategy that iterates between sequence design and structure prediction to design a 93-residue alpha/beta protein called Top7 with a novel sequence and topology. Top7 was found experimentally to be folded and extremely stable, and the x-ray crystal structure of Top7 is similar (root mean square deviation equals 1.2 angstroms) to the design model. The ability to design a new protein fold makes possible the exploration of the large regions of the protein universe not yet observed in nature.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Kuhlman, Brian -- Dantas, Gautam -- Ireton, Gregory C -- Varani, Gabriele -- Stoddard, Barry L -- Baker, David -- New York, N.Y. -- Science. 2003 Nov 21;302(5649):1364-8.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Department of Biochemistry, University of Washington, Seattle, WA 98195, USA.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/14631033" target="_blank"〉PubMed〈/a〉
    Keywords: Algorithms ; Amino Acid Sequence ; Circular Dichroism ; Computational Biology ; Computer Graphics ; Computer Simulation ; Crystallization ; Crystallography, X-Ray ; Databases, Protein ; Models, Molecular ; Molecular Sequence Data ; Monte Carlo Method ; Nuclear Magnetic Resonance, Biomolecular ; *Protein Conformation ; Protein Denaturation ; *Protein Engineering ; *Protein Folding ; Protein Structure, Secondary ; Proteins/*chemistry ; *Software ; Solubility ; Temperature ; Thermodynamics
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 13
    Publication Date: 2005-05-10
    Description: Thermostabilizing an enzyme while maintaining its activity for industrial or biomedical applications can be difficult with traditional selection methods. We describe a rapid computational approach that identified three mutations within a model enzyme that produced a 10 degrees C increase in apparent melting temperature T(m) and a 30-fold increase in half-life at 50 degrees C, with no reduction in catalytic efficiency. The effects of the mutations were synergistic, giving an increase in excess of the sum of their individual effects. The redesigned enzyme induced an increased, temperature-dependent bacterial growth rate under conditions that required its activity, thereby coupling molecular and metabolic engineering.〈br /〉〈br /〉〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3412875/" target="_blank"〉〈img src="https://static.pubmed.gov/portal/portal3rc.fcgi/4089621/img/3977009" border="0"〉〈/a〉   〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3412875/" target="_blank"〉This paper as free author manuscript - peer-reviewed and accepted for publication〈/a〉〈br /〉〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Korkegian, Aaron -- Black, Margaret E -- Baker, David -- Stoddard, Barry L -- CA85939/CA/NCI NIH HHS/ -- CA97328/CA/NCI NIH HHS/ -- GM49857/GM/NIGMS NIH HHS/ -- GM59224/GM/NIGMS NIH HHS/ -- R01 CA097328/CA/NCI NIH HHS/ -- R01 GM049857/GM/NIGMS NIH HHS/ -- T32-GM08268/GM/NIGMS NIH HHS/ -- New York, N.Y. -- Science. 2005 May 6;308(5723):857-60.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Division of Basic Sciences, Fred Hutchinson Cancer Research Center (FHCRC), 1100 Fairview Avenue North, Seattle, WA 98109, USA.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/15879217" target="_blank"〉PubMed〈/a〉
    Keywords: Amino Acid Sequence ; Binding Sites ; Catalysis ; Circular Dichroism ; *Computer Simulation ; Crystallography, X-Ray ; Cytosine Deaminase/*chemistry/*metabolism ; Enzyme Stability ; Escherichia coli/genetics/metabolism ; Kinetics ; Models, Molecular ; Molecular Sequence Data ; Monte Carlo Method ; Mutagenesis, Site-Directed ; Point Mutation ; Protein Conformation ; Protein Denaturation ; *Protein Engineering ; Protein Folding ; Protein Structure, Secondary ; Software ; Temperature ; Thermodynamics ; Transformation, Genetic ; Yeasts/enzymology
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 14
    Publication Date: 2005-05-10
    Description: Using genomic and mass spectrometry-based proteomic methods, we evaluated gene expression, identified key activities, and examined partitioning of metabolic functions in a natural acid mine drainage (AMD) microbial biofilm community. We detected 2033 proteins from the five most abundant species in the biofilm, including 48% of the predicted proteins from the dominant biofilm organism, Leptospirillum group II. Proteins involved in protein refolding and response to oxidative stress appeared to be highly expressed, which suggests that damage to biomolecules is a key challenge for survival. We validated and estimated the relative abundance and cellular localization of 357 unique and 215 conserved novel proteins and determined that one abundant novel protein is a cytochrome central to iron oxidation and AMD formation.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Ram, Rachna J -- Verberkmoes, Nathan C -- Thelen, Michael P -- Tyson, Gene W -- Baker, Brett J -- Blake, Robert C 2nd -- Shah, Manesh -- Hettich, Robert L -- Banfield, Jillian F -- New York, N.Y. -- Science. 2005 Jun 24;308(5730):1915-20. Epub 2005 May 5.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Department of Environmental Science, Policy, and Management, University of California at Berkeley, Berkeley, CA 94720, USA.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/15879173" target="_blank"〉PubMed〈/a〉
    Keywords: Amino Acids/metabolism ; Archaeal Proteins/*analysis/chemistry ; Bacteria/chemistry/genetics/*metabolism ; Bacterial Proteins/*analysis/chemistry/genetics/physiology ; *Biofilms/growth & development ; Cytochromes/analysis/chemistry ; *Ecosystem ; Gene Expression ; Genes, Archaeal ; Genes, Bacterial ; Genome, Archaeal ; Genome, Bacterial ; Genomics ; Hydrogen-Ion Concentration ; Iron/metabolism ; Isoelectric Point ; Mass Spectrometry ; *Mining ; Molecular Sequence Data ; Oxidation-Reduction ; Protein Biosynthesis ; Protein Folding ; Proteome ; *Proteomics ; Thermoplasmales/chemistry/genetics/*metabolism
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 15
    Publication Date: 2006-07-01
    Description: The clock gene period-4 (prd-4) in Neurospora was identified by a single allele displaying shortened circadian period and altered temperature compensation. Positional cloning followed by functional tests show that PRD-4 is an ortholog of mammalian checkpoint kinase 2 (Chk2). Expression of prd-4 is regulated by the circadian clock and, reciprocally, PRD-4 physically interacts with the clock component FRQ, promoting its phosphorylation. DNA-damaging agents can reset the clock in a manner that depends on time of day, and this resetting is dependent on PRD-4. Thus, prd-4, the Neurospora Chk2, identifies a molecular link that feeds back conditionally from circadian output to input and the cell cycle.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Pregueiro, Antonio M -- Liu, Qiuyun -- Baker, Christopher L -- Dunlap, Jay C -- Loros, Jennifer J -- MH44651/MH/NIMH NIH HHS/ -- P01 GM068087/GM/NIGMS NIH HHS/ -- R01 GM034985/GM/NIGMS NIH HHS/ -- R37GM34985/GM/NIGMS NIH HHS/ -- New York, N.Y. -- Science. 2006 Aug 4;313(5787):644-9. Epub 2006 Jun 29.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Department of Genetics, Dartmouth Medical School, Hanover, NH 03755, USA.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/16809488" target="_blank"〉PubMed〈/a〉
    Keywords: Amino Acid Sequence ; *Cell Cycle ; Checkpoint Kinase 2 ; *Circadian Rhythm ; Cloning, Molecular ; DNA Damage ; Feedback, Physiological ; Fungal Proteins/chemistry/genetics/metabolism ; Gene Expression Regulation, Fungal ; Genes, Fungal ; Methyl Methanesulfonate/pharmacology ; Molecular Sequence Data ; Mutation ; Neurospora/*enzymology/genetics ; Neurospora crassa/cytology/*enzymology/*physiology ; Phosphorylation ; Protein-Serine-Threonine Kinases/chemistry/*genetics/*metabolism
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 16
    Publication Date: 1995-12-15
    Description: Ubiquitin is a highly conserved polypeptide found in all eukaryotes. The major function of ubiquitin is to target proteins for complete or partial degradation by a multisubunit protein complex called the proteasome. Here, the Drosophila fat facets gene, which is required for the appropriate determination of particular cells in the fly eye, was shown to encode a ubiquitin-specific protease (Ubp), an enzyme that cleaves ubiquitin from ubiquitin-protein conjugates. The Fat facets protein (FAF) acts as a regulatory Ubp that prevents degradation of its substrate by the proteasome. Flies bearing fat facets gene mutations were used to show that a Ubp is cell type--and substrate-specific and a regulator of cell fate decisions in a multicellular organism.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Huang, Y -- Baker, R T -- Fischer-Vize, J A -- New York, N.Y. -- Science. 1995 Dec 15;270(5243):1828-31.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Department of Zoology, University of Texas, Austin 78712, USA.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/8525378" target="_blank"〉PubMed〈/a〉
    Keywords: Amino Acid Sequence ; Animals ; Base Sequence ; *Cell Differentiation/genetics ; Cysteine/metabolism ; Drosophila/embryology/enzymology/genetics ; Endopeptidases/genetics/*metabolism ; Escherichia coli ; Eye/embryology ; Molecular Sequence Data ; Mutagenesis, Site-Directed ; Oligodeoxyribonucleotides ; Recombinant Fusion Proteins/genetics/metabolism ; Ubiquitins/*metabolism ; beta-Galactosidase/genetics
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 17
    facet.materialart.
    Unknown
    American Association for the Advancement of Science (AAAS)
    Publication Date: 1995-05-05
    Description: Plant breeders have used disease resistance genes (R genes) to control plant disease since the turn of the century. Molecular cloning of R genes that enable plants to resist a diverse range of pathogens has revealed that the proteins encoded by these genes have several features in common. These findings suggest that plants may have evolved common signal transduction mechanisms for the expression of resistance to a wide range of unrelated pathogens. Characterization of the molecular signals involved in pathogen recognition and of the molecular events that specify the expression of resistance may lead to novel strategies for plant disease control.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Staskawicz, B J -- Ausubel, F M -- Baker, B J -- Ellis, J G -- Jones, J D -- New York, N.Y. -- Science. 1995 May 5;268(5211):661-7.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Department of Plant Biology, University of California, Berkeley 94720, USA.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/7732374" target="_blank"〉PubMed〈/a〉
    Keywords: Amino Acid Sequence ; Genes, Plant ; Genetic Engineering ; Immunity, Innate/genetics ; Molecular Sequence Data ; Plant Diseases/*genetics/microbiology ; Signal Transduction ; Virulence/genetics
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 18
    Publication Date: 1995-12-22
    Description: Plasmodesmata are intercellular organelles in plants that establish cytoplasmic continuity between neighboring cells. Microinjection studies showed that plasmodesmata facilitate the cell-to-cell transport of a plant-encoded transcription factor, KNOTTED1 (KN1). KN1 can also mediate the selective plasmodesmal trafficking of kn1 sense RNA. The emerging picture of plant development suggests that cell fate is determined at least in part by supracellular controls responding to cellular position as well as lineage. One of the mechanisms that enables the necessary intercellular communication appears to involve transfer of informational molecules (proteins and RNA) through plasmodesmata.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Lucas, W J -- Bouche-Pillon, S -- Jackson, D P -- Nguyen, L -- Baker, L -- Ding, B -- Hake, S -- New York, N.Y. -- Science. 1995 Dec 22;270(5244):1980-3.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Section of Plant Biology, University of California, Davis 95616, USA.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/8533088" target="_blank"〉PubMed〈/a〉
    Keywords: Amino Acid Sequence ; Biological Transport ; *Cell Communication ; Homeodomain Proteins/*metabolism ; Molecular Sequence Data ; Organelles/*metabolism ; Plant Proteins/*metabolism ; Plant Viral Movement Proteins ; Plants/*metabolism/ultrastructure ; Plants, Toxic ; RNA, Plant/genetics/*metabolism ; RNA, Viral/genetics/metabolism ; Tobacco/metabolism/ultrastructure ; Viral Proteins/metabolism ; Zea mays/metabolism/ultrastructure
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 19
    Publication Date: 1993-06-04
    Description: Biological variability of human immunodeficiency virus type-1 (HIV-1) is involved in the pathogenesis of acquired immunodeficiency syndrome (AIDS). Syncytium-inducing (SI) HIV-1 variants emerge in 50 percent of infected individuals during infection, preceding accelerated CD4+ T cell loss and rapid progression to AIDS. The V1 to V2 and V3 region of the viral envelope glycoprotein gp120 contained the major determinants of SI capacity. The configuration of a hypervariable locus in the V2 domain appeared to be predictive for non-SI to SI phenotype conversion. Early prediction of HIV-1 phenotype evolution may be useful for clinical monitoring and treatment of asymptomatic infection.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Groenink, M -- Fouchier, R A -- Broersen, S -- Baker, C H -- Koot, M -- van't Wout, A B -- Huisman, H G -- Miedema, F -- Tersmette, M -- Schuitemaker, H -- New York, N.Y. -- Science. 1993 Jun 4;260(5113):1513-6.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Department of Clinical Viro-Immunology, Central Laboratory of the Netherlands Red Cross Blood Transfusion Service, Amsterdam.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/8502996" target="_blank"〉PubMed〈/a〉
    Keywords: Acquired Immunodeficiency Syndrome/microbiology ; Amino Acid Sequence ; Base Sequence ; Biological Evolution ; Consensus Sequence ; Genetic Variation ; Giant Cells/microbiology ; HIV Envelope Protein gp120/*chemistry ; HIV Seropositivity/microbiology ; HIV-1/*chemistry/*genetics/pathogenicity ; Humans ; Male ; Molecular Sequence Data ; Phenotype ; Protein Conformation ; Recombination, Genetic
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 20
    facet.materialart.
    Unknown
    American Association for the Advancement of Science (AAAS)
    Publication Date: 1989-02-17
    Description: Mutant flies in which the gene coding for the Shaker potassium channel is deleted still have potassium currents similar to those coded by the Shaker gene. This suggests the presence of a family of Shaker-like genes in Drosophila. By using a Shaker complementary DNA probe and low-stringency hybridization, three additional family members have now been isolated, Shab, Shaw, and Shal. The Shaker family genes are not clustered in the genome. The deduced proteins of Shab, Shaw, and Shal have high homology to the Shaker protein; the sequence identity of the integral membrane portions is greater than 50 percent. These genes are organized similarly to Shaker in that only a single homology domain containing six presumed membrane-spanning segments common to all voltage-gated ion channels is coded by each messenger RNA. Thus, potassium channel diversity could result from an extended gene family, as well as from alternate splicing of the Shaker primary transcript.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Butler, A -- Wei, A G -- Baker, K -- Salkoff, L -- 1 RO1 NS24785-01/NS/NINDS NIH HHS/ -- GMO 7200/GM/NIGMS NIH HHS/ -- New York, N.Y. -- Science. 1989 Feb 17;243(4893):943-7.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Department of Anatomy and Neurobiology, Washington University School of Medicine, St. Louis, MO 63110.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/2493160" target="_blank"〉PubMed〈/a〉
    Keywords: Amino Acid Sequence ; Animals ; Blotting, Northern ; Carrier Proteins/*genetics ; Drosophila Proteins ; Drosophila melanogaster/*genetics ; *Genes ; Molecular Sequence Data ; *Multigene Family ; Potassium Channels/*physiology ; Protein Conformation ; RNA, Messenger/genetics ; Shab Potassium Channels
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...