ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
Filter
  • Male  (99)
  • American Association for the Advancement of Science (AAAS)  (99)
  • American Institute of Physics
  • American Institute of Physics (AIP)
  • National Academy of Sciences
Collection
Publisher
  • American Association for the Advancement of Science (AAAS)  (99)
  • American Institute of Physics
  • American Institute of Physics (AIP)
  • National Academy of Sciences
  • Nature Publishing Group (NPG)  (48)
  • 1
    Publication Date: 2001-08-11
    Description: The power of placebos has long been recognized for improving numerous medical conditions such as Parkinson's disease (PD). Little is known, however, about the mechanism underlying the placebo effect. Using the ability of endogenous dopamine to compete for [11C]raclopride binding as measured by positron emission tomography, we provide in vivo evidence for substantial release of endogenous dopamine in the striatum of PD patients in response to placebo. Our findings indicate that the placebo effect in PD is powerful and is mediated through activation of the damaged nigrostriatal dopamine system.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉de la Fuente-Fernandez, R -- Ruth, T J -- Sossi, V -- Schulzer, M -- Calne, D B -- Stoessl, A J -- New York, N.Y. -- Science. 2001 Aug 10;293(5532):1164-6.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Neurodegenerative Disorders Centre, TRIUMF, University of British Columbia, Vancouver, BC, Canada V6T 2B5.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/11498597" target="_blank"〉PubMed〈/a〉
    Keywords: Aged ; Antiparkinson Agents/administration & dosage/*therapeutic use ; Apomorphine/administration & dosage/*therapeutic use ; Corpus Striatum/*metabolism/radionuclide imaging ; Dopamine/*metabolism ; Female ; Humans ; Male ; Middle Aged ; Parkinson Disease/*drug therapy/metabolism ; *Placebo Effect ; Placebos/administration & dosage ; Raclopride/metabolism ; Synapses/metabolism ; Tomography, Emission-Computed
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 2
    facet.materialart.
    Unknown
    American Association for the Advancement of Science (AAAS)
    Publication Date: 2000-09-01
    Description: The strength and integrity of our bones depends on maintaining a delicate balance between bone resorption by osteoclasts and bone formation by osteoblasts. As we age or as a result of disease, this delicate balancing act becomes tipped in favor of osteoclasts so that bone resorption exceeds bone formation, rendering bones brittle and prone to fracture. A better understanding of the biology of osteoclasts and osteoblasts is providing opportunities for developing therapeutics to treat diseases of bone. Drugs that inhibit the formation or activity of osteoclasts are valuable for treating osteoporosis, Paget's disease, and inflammation of bone associated with rheumatoid arthritis or periodontal disease. Far less attention has been paid to promoting bone formation with, for example, growth factors or hormones, an approach that would be a valuable adjunct therapy for patients receiving inhibitors of bone resorption.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Rodan, G A -- Martin, T J -- New York, N.Y. -- Science. 2000 Sep 1;289(5484):1508-14.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Merck Research Laboratories, West Point, PA 19486, USA. St. Vincent's Institute of Medical Research, Melbourne 3065, Australia. gideon_rodan@merck.com〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/10968781" target="_blank"〉PubMed〈/a〉
    Keywords: Animals ; Bone Diseases/*drug therapy/genetics/physiopathology/therapy ; Bone Resorption/drug therapy ; Calcitonin/therapeutic use ; Diphosphonates/therapeutic use ; Estrogen Receptor Modulators/therapeutic use ; Estrogens/therapeutic use ; Female ; Genetic Therapy ; Growth Substances/therapeutic use ; Humans ; Male ; Osteoclasts/drug effects ; Osteogenesis/drug effects ; Osteoporosis/*drug therapy/genetics/physiopathology/therapy ; Parathyroid Hormone/therapeutic use
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 3
    Publication Date: 2002-06-08
    Description: Analysis of recombination between loci (linkage analysis) has been a cornerstone of human genetic research, enabling investigators to localize and, ultimately, identify genetic loci. However, despite these efforts little is known about patterns of meiotic exchange in human germ cells or the mechanisms that control these patterns. Using recently developed immunofluorescence methodology to examine exchanges in human spermatocytes, we have identified remarkable variation in the rate of recombination within and among individuals. Subsequent analyses indicate that, in humans and mice, this variation is linked to differences in the length of the synaptonemal complex. Thus, at least in mammals, a physical structure, the synaptonemal complex, reflects genetic rather than physical distance.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Lynn, Audrey -- Koehler, Kara E -- Judis, LuAnn -- Chan, Ernest R -- Cherry, Jonathan P -- Schwartz, Stuart -- Seftel, Allen -- Hunt, Patricia A -- Hassold, Terry J -- HD07518/HD/NICHD NIH HHS/ -- HD21341/HD/NICHD NIH HHS/ -- HD37502/HD/NICHD NIH HHS/ -- New York, N.Y. -- Science. 2002 Jun 21;296(5576):2222-5. Epub 2002 Jun 6.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Department of Genetics, Case Western Reserve University, Cleveland, OH, USA.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/12052900" target="_blank"〉PubMed〈/a〉
    Keywords: Adaptor Proteins, Signal Transducing ; Adult ; Aged ; Animals ; Carrier Proteins ; Chromosomes, Human/physiology/*ultrastructure ; Crossing Over, Genetic ; Female ; Humans ; In Situ Hybridization, Fluorescence ; Male ; *Meiosis ; Mice ; Mice, Inbred Strains ; Microscopy, Fluorescence ; Middle Aged ; Neoplasm Proteins/analysis ; Nuclear Proteins ; *Recombination, Genetic ; Spermatocytes/physiology/*ultrastructure ; Synaptonemal Complex/*ultrastructure
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 4
    Publication Date: 2001-02-24
    Description: One of the scientific anomalies of the AIDS epidemic is the large difference in infection rates across populations. Given limited resources and segregated epidemics, prevention funding should be directed to population segments with high HIV prevalence and incidence. However, recent surveys of U.S. populations indicate that the allocation of prevention dollars is not consistent with the distribution of HIV in the population.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Catania, J A -- Morin, S F -- Canchola, J -- Pollack, L -- Chang, J -- Coates, T J -- MH42459/MH/NIMH NIH HHS/ -- MH43892/MH/NIMH NIH HHS/ -- MH51523/MH/NIMH NIH HHS/ -- etc. -- New York, N.Y. -- Science. 2000 Oct 27;290(5492):717.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Center for AIDS Prevention Studies, AIDS Research Institute, University of California-San Francisco, San Francisco, CA 94105, USA. jcatania@psg.ucsf.edu〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/11184201" target="_blank"〉PubMed〈/a〉
    Keywords: Disease Outbreaks/prevention & control ; Female ; HIV Infections/economics/*epidemiology/*prevention & control/transmission ; Health Expenditures ; *Health Policy ; Health Priorities ; Health Resources ; *Heterosexuality/statistics & numerical data ; *Homosexuality, Male/statistics & numerical data ; Humans ; Incidence ; Male ; Population Surveillance ; Prevalence ; Preventive Health Services/*economics ; Sexually Transmitted Diseases/epidemiology ; United States/epidemiology
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 5
    Publication Date: 2001-03-07
    Description: The ability of intestinal mucosa to absorb dietary ferric iron is attributed to the presence of a brush-border membrane reductase activity that displays adaptive responses to iron status. We have isolated a complementary DNA, Dcytb (for duodenal cytochrome b), which encoded a putative plasma membrane di-heme protein in mouse duodenal mucosa. Dcytb shared between 45 and 50% similarity to the cytochrome b561 family of plasma membrane reductases, was highly expressed in the brush-border membrane of duodenal enterocytes, and induced ferric reductase activity when expressed in Xenopus oocytes and cultured cells. Duodenal expression levels of Dcytb messenger RNA and protein were regulated by changes in physiological modulators of iron absorption. Thus, Dcytb provides an important element in the iron absorption pathway.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉McKie, A T -- Barrow, D -- Latunde-Dada, G O -- Rolfs, A -- Sager, G -- Mudaly, E -- Mudaly, M -- Richardson, C -- Barlow, D -- Bomford, A -- Peters, T J -- Raja, K B -- Shirali, S -- Hediger, M A -- Farzaneh, F -- Simpson, R J -- New York, N.Y. -- Science. 2001 Mar 2;291(5509):1755-9. Epub 2001 Feb 1.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Department of Molecular Medicine, Guy's, King's and St. Thomas' School of Medicine, King's College London, Rayne Institute, Denmark Hill Campus, 123 Coldharbour Lane, London SE5 9NU, UK. andrew.t.mckie@kcl.ac.uk〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/11230685" target="_blank"〉PubMed〈/a〉
    Keywords: Amino Acid Sequence ; Anemia/enzymology ; Animals ; Anoxia ; Cell Line ; Cloning, Molecular ; Cytochrome b Group/chemistry/genetics/*metabolism ; DNA, Complementary ; Duodenum/enzymology/*metabolism ; Enterocytes/enzymology/metabolism ; Enzyme Induction ; Ferric Compounds/*metabolism ; *Intestinal Absorption ; Intestinal Mucosa/enzymology/*metabolism ; Iron, Dietary/administration & dosage/*metabolism ; Male ; Mice ; Microvilli/enzymology/metabolism ; Molecular Sequence Data ; Nitroblue Tetrazolium/metabolism ; Oocytes ; Oxidation-Reduction ; Oxidoreductases/chemistry/genetics/*metabolism ; RNA, Messenger/genetics/metabolism ; Tetrazolium Salts/metabolism ; Thiazoles/metabolism ; *Transfection ; Up-Regulation ; Xenopus
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 6
    Publication Date: 2001-02-22
    Description: A 2.91-billion base pair (bp) consensus sequence of the euchromatic portion of the human genome was generated by the whole-genome shotgun sequencing method. The 14.8-billion bp DNA sequence was generated over 9 months from 27,271,853 high-quality sequence reads (5.11-fold coverage of the genome) from both ends of plasmid clones made from the DNA of five individuals. Two assembly strategies-a whole-genome assembly and a regional chromosome assembly-were used, each combining sequence data from Celera and the publicly funded genome effort. The public data were shredded into 550-bp segments to create a 2.9-fold coverage of those genome regions that had been sequenced, without including biases inherent in the cloning and assembly procedure used by the publicly funded group. This brought the effective coverage in the assemblies to eightfold, reducing the number and size of gaps in the final assembly over what would be obtained with 5.11-fold coverage. The two assembly strategies yielded very similar results that largely agree with independent mapping data. The assemblies effectively cover the euchromatic regions of the human chromosomes. More than 90% of the genome is in scaffold assemblies of 100,000 bp or more, and 25% of the genome is in scaffolds of 10 million bp or larger. Analysis of the genome sequence revealed 26,588 protein-encoding transcripts for which there was strong corroborating evidence and an additional approximately 12,000 computationally derived genes with mouse matches or other weak supporting evidence. Although gene-dense clusters are obvious, almost half the genes are dispersed in low G+C sequence separated by large tracts of apparently noncoding sequence. Only 1.1% of the genome is spanned by exons, whereas 24% is in introns, with 75% of the genome being intergenic DNA. Duplications of segmental blocks, ranging in size up to chromosomal lengths, are abundant throughout the genome and reveal a complex evolutionary history. Comparative genomic analysis indicates vertebrate expansions of genes associated with neuronal function, with tissue-specific developmental regulation, and with the hemostasis and immune systems. DNA sequence comparisons between the consensus sequence and publicly funded genome data provided locations of 2.1 million single-nucleotide polymorphisms (SNPs). A random pair of human haploid genomes differed at a rate of 1 bp per 1250 on average, but there was marked heterogeneity in the level of polymorphism across the genome. Less than 1% of all SNPs resulted in variation in proteins, but the task of determining which SNPs have functional consequences remains an open challenge.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Venter, J C -- Adams, M D -- Myers, E W -- Li, P W -- Mural, R J -- Sutton, G G -- Smith, H O -- Yandell, M -- Evans, C A -- Holt, R A -- Gocayne, J D -- Amanatides, P -- Ballew, R M -- Huson, D H -- Wortman, J R -- Zhang, Q -- Kodira, C D -- Zheng, X H -- Chen, L -- Skupski, M -- Subramanian, G -- Thomas, P D -- Zhang, J -- Gabor Miklos, G L -- Nelson, C -- Broder, S -- Clark, A G -- Nadeau, J -- McKusick, V A -- Zinder, N -- Levine, A J -- Roberts, R J -- Simon, M -- Slayman, C -- Hunkapiller, M -- Bolanos, R -- Delcher, A -- Dew, I -- Fasulo, D -- Flanigan, M -- Florea, L -- Halpern, A -- Hannenhalli, S -- Kravitz, S -- Levy, S -- Mobarry, C -- Reinert, K -- Remington, K -- Abu-Threideh, J -- Beasley, E -- Biddick, K -- Bonazzi, V -- Brandon, R -- Cargill, M -- Chandramouliswaran, I -- Charlab, R -- Chaturvedi, K -- Deng, Z -- Di Francesco, V -- Dunn, P -- Eilbeck, K -- Evangelista, C -- Gabrielian, A E -- Gan, W -- Ge, W -- Gong, F -- Gu, Z -- Guan, P -- Heiman, T J -- Higgins, M E -- Ji, R R -- Ke, Z -- Ketchum, K A -- Lai, Z -- Lei, Y -- Li, Z -- Li, J -- Liang, Y -- Lin, X -- Lu, F -- Merkulov, G V -- Milshina, N -- Moore, H M -- Naik, A K -- Narayan, V A -- Neelam, B -- Nusskern, D -- Rusch, D B -- Salzberg, S -- Shao, W -- Shue, B -- Sun, J -- Wang, Z -- Wang, A -- Wang, X -- Wang, J -- Wei, M -- Wides, R -- Xiao, C -- Yan, C -- Yao, A -- Ye, J -- Zhan, M -- Zhang, W -- Zhang, H -- Zhao, Q -- Zheng, L -- Zhong, F -- Zhong, W -- Zhu, S -- Zhao, S -- Gilbert, D -- Baumhueter, S -- Spier, G -- Carter, C -- Cravchik, A -- Woodage, T -- Ali, F -- An, H -- Awe, A -- Baldwin, D -- Baden, H -- Barnstead, M -- Barrow, I -- Beeson, K -- Busam, D -- Carver, A -- Center, A -- Cheng, M L -- Curry, L -- Danaher, S -- Davenport, L -- Desilets, R -- Dietz, S -- Dodson, K -- Doup, L -- Ferriera, S -- Garg, N -- Gluecksmann, A -- Hart, B -- Haynes, J -- Haynes, C -- Heiner, C -- Hladun, S -- Hostin, D -- Houck, J -- Howland, T -- Ibegwam, C -- Johnson, J -- Kalush, F -- Kline, L -- Koduru, S -- Love, A -- Mann, F -- May, D -- McCawley, S -- McIntosh, T -- McMullen, I -- Moy, M -- Moy, L -- Murphy, B -- Nelson, K -- Pfannkoch, C -- Pratts, E -- Puri, V -- Qureshi, H -- Reardon, M -- Rodriguez, R -- Rogers, Y H -- Romblad, D -- Ruhfel, B -- Scott, R -- Sitter, C -- Smallwood, M -- Stewart, E -- Strong, R -- Suh, E -- Thomas, R -- Tint, N N -- Tse, S -- Vech, C -- Wang, G -- Wetter, J -- Williams, S -- Williams, M -- Windsor, S -- Winn-Deen, E -- Wolfe, K -- Zaveri, J -- Zaveri, K -- Abril, J F -- Guigo, R -- Campbell, M J -- Sjolander, K V -- Karlak, B -- Kejariwal, A -- Mi, H -- Lazareva, B -- Hatton, T -- Narechania, A -- Diemer, K -- Muruganujan, A -- Guo, N -- Sato, S -- Bafna, V -- Istrail, S -- Lippert, R -- Schwartz, R -- Walenz, B -- Yooseph, S -- Allen, D -- Basu, A -- Baxendale, J -- Blick, L -- Caminha, M -- Carnes-Stine, J -- Caulk, P -- Chiang, Y H -- Coyne, M -- Dahlke, C -- Mays, A -- Dombroski, M -- Donnelly, M -- Ely, D -- Esparham, S -- Fosler, C -- Gire, H -- Glanowski, S -- Glasser, K -- Glodek, A -- Gorokhov, M -- Graham, K -- Gropman, B -- Harris, M -- Heil, J -- Henderson, S -- Hoover, J -- Jennings, D -- Jordan, C -- Jordan, J -- Kasha, J -- Kagan, L -- Kraft, C -- Levitsky, A -- Lewis, M -- Liu, X -- Lopez, J -- Ma, D -- Majoros, W -- McDaniel, J -- Murphy, S -- Newman, M -- Nguyen, T -- Nguyen, N -- Nodell, M -- Pan, S -- Peck, J -- Peterson, M -- Rowe, W -- Sanders, R -- Scott, J -- Simpson, M -- Smith, T -- Sprague, A -- Stockwell, T -- Turner, R -- Venter, E -- Wang, M -- Wen, M -- Wu, D -- Wu, M -- Xia, A -- Zandieh, A -- Zhu, X -- New York, N.Y. -- Science. 2001 Feb 16;291(5507):1304-51.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Celera Genomics, 45 West Gude Drive, Rockville, MD 20850, USA. humangenome@celera.com〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/11181995" target="_blank"〉PubMed〈/a〉
    Keywords: Algorithms ; Animals ; Chromosome Banding ; Chromosome Mapping ; Chromosomes, Artificial, Bacterial ; Computational Biology ; Consensus Sequence ; CpG Islands ; DNA, Intergenic ; Databases, Factual ; Evolution, Molecular ; Exons ; Female ; Gene Duplication ; Genes ; Genetic Variation ; *Genome, Human ; *Human Genome Project ; Humans ; Introns ; Male ; Phenotype ; Physical Chromosome Mapping ; Polymorphism, Single Nucleotide ; Proteins/genetics/physiology ; Pseudogenes ; Repetitive Sequences, Nucleic Acid ; Retroelements ; *Sequence Analysis, DNA/methods ; Species Specificity
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 7
    Publication Date: 1988-11-04
    Description: Studies in animals suggest that fetal neural grafts might restore lost neurological function in Parkinson's disease. In monkeys, such grafts survive for many months and reverse signs of parkinsonism, without attendant graft rejection. The successful and reliable application of a similar transplantation procedure to human patients, however, will require neural tissue obtained from human fetal cadavers, with demonstrated cellular identity, viability, and biological safety. In this report, human fetal neural tissue was successfully grafted into the brains of monkeys. Neural tissue was collected from human fetal cadavers after 9 to 12 weeks of gestation and cryopreserved in liquid nitrogen. Viability after up to 2 months of storage was demonstrated by cell culture and by transplantation into monkeys. Cryopreservation and storage of human fetal neural tissue would allow formation of a tissue bank. The stored cells could then be specifically tested to assure their cellular identity, viability, and bacteriological and virological safety before clinical use. The capacity to collect and maintain viable human fetal neural tissue would also facilitate research efforts to understand the development and function of the human brain and provide opportunities to study neurological diseases.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Redmond, D E Jr -- Naftolin, F -- Collier, T J -- Leranth, C -- Robbins, R J -- Sladek, C D -- Roth, R H -- Sladek, J R Jr -- New York, N.Y. -- Science. 1988 Nov 4;242(4879):768-71.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Department of Psychiatry, Yale University School of Medicine, New Haven, CT 06510.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/2903552" target="_blank"〉PubMed〈/a〉
    Keywords: Animals ; Cell Survival ; Cells, Cultured ; Cercopithecus ; Fetus ; Freezing ; Humans ; Male ; Mesencephalon/cytology/embryology/enzymology/*transplantation ; Preservation, Biological ; Transplantation, Heterologous ; Tyrosine 3-Monooxygenase/metabolism
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 8
    Publication Date: 1998-02-07
    Description: Benign familial neonatal convulsions (BFNC) is an autosomal dominant epilepsy of infancy, with loci mapped to human chromosomes 20q13.3 and 8q24. By positional cloning, a potassium channel gene (KCNQ2) located on 20q13.3 was isolated and found to be expressed in brain. Expression of KCNQ2 in frog (Xenopus laevis) oocytes led to potassium-selective currents that activated slowly with depolarization. In a large pedigree with BFNC, a five-base pair insertion would delete more than 300 amino acids from the KCNQ2 carboxyl terminus. Expression of the mutant channel did not yield measurable currents. Thus, impairment of potassium-dependent repolarization is likely to cause this age-specific epileptic syndrome.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Biervert, C -- Schroeder, B C -- Kubisch, C -- Berkovic, S F -- Propping, P -- Jentsch, T J -- Steinlein, O K -- New York, N.Y. -- Science. 1998 Jan 16;279(5349):403-6.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Institute for Human Genetics, University of Bonn, Bonn, Germany.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/9430594" target="_blank"〉PubMed〈/a〉
    Keywords: Action Potentials ; Amino Acid Sequence ; Animals ; Brain/metabolism ; Chromosome Mapping ; Chromosomes, Human, Pair 20 ; Cloning, Molecular ; Epilepsy/*genetics/metabolism ; Female ; Frameshift Mutation ; Humans ; Infant, Newborn ; KCNQ2 Potassium Channel ; Male ; Molecular Sequence Data ; Mutagenesis, Insertional ; Oocytes/metabolism ; Open Reading Frames ; Pedigree ; Potassium/metabolism ; Potassium Channels/chemistry/*genetics/metabolism ; *Potassium Channels, Voltage-Gated ; Xenopus laevis
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 9
    Publication Date: 1989-04-14
    Description: A group of rats was trained to escape low-intensity shock in a shuttle-box test, while another group of yoked controls could not escape but was exposed to the same amount and regime of shock. After 1 week of training, long-term potentiation (LTP) was measured in vitro in hippocampal slices. Exposure to uncontrollable shock massively impaired LTP relative to exposure to the same amount and regime of controllable shock. These results provide evidence that controllability modulates plasticity at the cellular-neuronal level.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Shors, T J -- Seib, T B -- Levine, S -- Thompson, R F -- HD02881/HD/NICHD NIH HHS/ -- MH11936/MH/NIMH NIH HHS/ -- New York, N.Y. -- Science. 1989 Apr 14;244(4901):224-6.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Department of Psychology, University of Southern California, Los Angeles 90089.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/2704997" target="_blank"〉PubMed〈/a〉
    Keywords: Animals ; Avoidance Learning ; Corticosterone/blood ; *Electroshock ; *Escape Reaction ; Hippocampus/*physiology ; Learning/physiology ; Male ; Memory/physiology ; *Neuronal Plasticity ; Rats ; Stress, Psychological/physiopathology
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 10
    facet.materialart.
    Unknown
    American Association for the Advancement of Science (AAAS)
    Publication Date: 1992-07-24
    Description: Stress has been shown to impair subsequent learning. To determine whether stress would impair classical conditioning, rats were exposed to inescapable, low-intensity tail shock and subsequently classically conditioned under freely moving conditions with a brief periorbital shock unconditioned stimulus and a white noise conditioned stimulus. Unexpectedly stressed rats exhibited significantly more conditioned eyeblink responses and the magnitude of their individual responses was also enhanced. These results stand in contrast to the learning deficits typically observed and suggest that stress can enhance the acquisition of discrete conditioned responses.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Shors, T J -- Weiss, C -- Thompson, R F -- AG00093/AG/NIA NIH HHS/ -- AG05500/AG/NIA NIH HHS/ -- AG05514/AG/NIA NIH HHS/ -- etc. -- New York, N.Y. -- Science. 1992 Jul 24;257(5069):537-9.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Department of Psychology, Princeton University, NJ 08544.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/1636089" target="_blank"〉PubMed〈/a〉
    Keywords: Acoustic Stimulation ; Animals ; Blinking ; Conditioning, Classical/*physiology ; Corticosterone/blood ; Electromyography ; Electroshock ; Learning/physiology ; Male ; Rats ; Rats, Inbred F344 ; Stress, Psychological/*physiopathology
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...