ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
Filter
  • Other Sources  (4)
  • American Association for the Advancement of Science (AAAS)  (2)
  • Wiley  (2)
  • American Geophysical Union
  • Frontiers Media
Collection
Publisher
Years
  • 1
    Publication Date: 2016-09-09
    Description: Using inorganic carbon measurements from an international survey effort in the 1990s and a tracer-based separation technique, we estimate a global oceanic anthropogenic carbon dioxide (CO2) sink for the period from 1800 to 1994 of 118 ± 19 petagrams of carbon. The oceanic sink accounts for ∼48% of the total fossil-fuel and cement-manufacturing emissions, implying that the terrestrial biosphere was a net source of CO2 to the atmosphere of about 39 ± 28 petagrams of carbon for this period. The current fraction of total anthropogenic CO2 emissions stored in the ocean appears to be about one-third of the long-term potential.
    Type: Article , PeerReviewed
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 2
    Publication Date: 2022-01-31
    Description: We quantify the oceanic sink for anthropogenic carbon dioxide (CO 2 ) over the period 1994 to 2007 by using observations from the global repeat hydrography program and contrasting them to observations from the 1990s. Using a linear regression–based method, we find a global increase in the anthropogenic CO 2 inventory of 34 ± 4 petagrams of carbon (Pg C) between 1994 and 2007. This is equivalent to an average uptake rate of 2.6 ± 0.3 Pg C year −1 and represents 31 ± 4% of the global anthropogenic CO 2 emissions over this period. Although this global ocean sink estimate is consistent with the expectation of the ocean uptake having increased in proportion to the rise in atmospheric CO 2 , substantial regional differences in storage rate are found, likely owing to climate variability–driven changes in ocean circulation.
    Type: Article , PeerReviewed , info:eu-repo/semantics/article
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 3
    Publication Date: 2024-02-07
    Description: This contribution to the RECCAP2 (REgional Carbon Cycle Assessment and Processes) assessment analyzes the processes that determine the global ocean carbon sink, and its trends and variability over the period 1985-2018, using a combination of models and observation-based products. The mean sea-air CO2 flux from 1985 to 2018 is -1.6 +/- 0.2 PgC yr(-1) based on an ensemble of reconstructions of the history of sea surface pCO(2) (pCO(2) products). Models indicate that the dominant component of this flux is the net oceanic uptake of anthropogenic CO2, which is estimated at -2.1 +/- 0.3 PgC yr(-1) by an ensemble of ocean biogeochemical models, and -2.4 +/- 0.1 PgC yr(-1) by two ocean circulation inverse models. The ocean also degasses about 0.65 +/- 0.3 PgC yr(-1) of terrestrially derived CO2, but this process is not fully resolved by any of the models used here. From 2001 to 2018, the pCO2 products reconstruct a trend in the ocean carbon sink of -0.61 +/- 0.12 PgC yr(-1) decade(-1), while biogeochemical models and inverse models diagnose an anthropogenic CO2-driven trend of -0.34 +/- 0.06 and -0.41 +/- 0.03 PgC yr(-1) decade(-1), respectively. This implies a climate-forced acceleration of the ocean carbon sink in recent decades, but there are still large uncertainties on the magnitude and cause of this trend. The interannual to decadal variability of the global carbon sink is mainly driven by climate variability, with the climate-driven variability exceeding the CO2-forced variability by 2-3 times. These results suggest that anthropogenic CO2 dominates the ocean CO2 sink, while climate-driven variability is potentially large but highly uncertain and not consistently captured across different methods.
    Type: Article , PeerReviewed
    Format: text
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 4
    Publication Date: 2024-02-07
    Description: Accurately predicting future ocean acidification (OA) conditions is crucial for advancing OA research at regional and global scales, and guiding society's mitigation and adaptation efforts. This study presents a new model-data fusion product covering 10 global surface OA indicators based on 14 Earth System Models (ESMs) from the Coupled Model Intercomparison Project Phase 6 (CMIP6), along with three recent observational ocean carbon data products. The indicators include fugacity of carbon dioxide, pH on total scale, total hydrogen ion content, free hydrogen ion content, carbonate ion content, aragonite saturation state, calcite saturation state, Revelle Factor, total dissolved inorganic carbon content, and total alkalinity content. The evolution of these OA indicators is presented on a global surface ocean 1° × 1° grid as decadal averages every 10 years from preindustrial conditions (1750), through historical conditions (1850–2010), and to five future Shared Socioeconomic Pathways (2020–2100): SSP1-1.9, SSP1-2.6, SSP2-4.5, SSP3-7.0, and SSP5-8.5. These OA trajectories represent an improvement over previous OA data products with respect to data quantity, spatial and temporal coverage, diversity of the underlying data and model simulations, and the provided SSPs. The generated data product offers a state-of-the-art research and management tool for the 21st century under the combined stressors of global climate change and ocean acidification. The gridded data product is available in NetCDF at the National Oceanic and Atmospheric Administration (NOAA) National Centers for Environmental Information: https://www.ncei.noaa.gov/data/oceans/ncei/ocads/metadata/0259391.html, and global maps of these indicators are available in jpeg at: https://www.ncei.noaa.gov/access/ocean-carbon-acidification-data-system/synthesis/surface-oa-indicators.html. Key Points: - This study presents the evolution of 10 ocean acidification (OA) indicators in the global surface ocean from 1750 to 2100 - By leveraging 14 Earth System Models (ESMs) and the latest observational data, it represents a significant advancement in OA projections - This inter-model comparison effort showcases the overall agreements among different ESMs in projecting surface ocean carbon variables
    Type: Article , PeerReviewed
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...