ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
Filter
  • Models, Biological  (2)
  • American Association for the Advancement of Science (AAAS)  (2)
  • American Chemical Society
  • Cell Press
  • National Academy of Sciences
Collection
Publisher
  • American Association for the Advancement of Science (AAAS)  (2)
  • American Chemical Society
  • Cell Press
  • National Academy of Sciences
Years
  • 1
    Publication Date: 2000-12-02
    Description: Abundant, micrometer-scale, spherical aggregates of 2- to 5-nanometer-diameter sphalerite (ZnS) particles formed within natural biofilms dominated by relatively aerotolerant sulfate-reducing bacteria of the family Desulfobacteriaceae. The biofilm zinc concentration is about 10(6) times that of associated groundwater (0.09 to 1.1 parts per million zinc). Sphalerite also concentrates arsenic (0.01 weight %) and selenium (0.004 weight %). The almost monomineralic product results from buffering of sulfide concentrations at low values by sphalerite precipitation. These results show how microbes control metal concentrations in groundwater- and wetland-based remediation systems and suggest biological routes for formation of some low-temperature ZnS deposits.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Labrenz, M -- Druschel, G K -- Thomsen-Ebert, T -- Gilbert, B -- Welch, S A -- Kemner, K M -- Logan, G A -- Summons, R E -- De Stasio, G -- Bond, P L -- Lai, B -- Kelly, S D -- Banfield, J F -- New York, N.Y. -- Science. 2000 Dec 1;290(5497):1744-7.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Department of Geology and Geophysics, University of Wisconsin-Madison, 1215 West Dayton Street, Madison, WI 53706, USA.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/11099408" target="_blank"〉PubMed〈/a〉
    Keywords: Arsenic/metabolism ; *Biofilms/growth & development ; Chemical Precipitation ; Computer Simulation ; Crystallization ; Deltaproteobacteria/growth & development/*metabolism ; Fatty Acids, Nonesterified/metabolism ; Ferrous Compounds/metabolism ; Geologic Sediments/*microbiology ; Hydrogen-Ion Concentration ; Metals/metabolism ; Models, Biological ; Oxidation-Reduction ; Oxygen/physiology ; Selenium/metabolism ; Sulfides/*metabolism ; Sulfur-Reducing Bacteria/growth & development/*metabolism ; Temperature ; Water Microbiology ; Zinc Compounds/*metabolism
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 2
    Publication Date: 2013-02-09
    Description: Mutations in IDH1 and IDH2, the genes coding for isocitrate dehydrogenases 1 and 2, are common in several human cancers, including leukemias, and result in overproduction of the (R)-enantiomer of 2-hydroxyglutarate [(R)-2HG]. Elucidation of the role of IDH mutations and (R)-2HG in leukemogenesis has been hampered by a lack of appropriate cell-based models. Here, we show that a canonical IDH1 mutant, IDH1 R132H, promotes cytokine independence and blocks differentiation in hematopoietic cells. These effects can be recapitulated by (R)-2HG, but not (S)-2HG, despite the fact that (S)-2HG more potently inhibits enzymes, such as the 5'-methylcytosine hydroxylase TET2, that have previously been linked to the pathogenesis of IDH mutant tumors. We provide evidence that this paradox relates to the ability of (S)-2HG, but not (R)-2HG, to inhibit the EglN prolyl hydroxylases. Additionally, we show that transformation by (R)-2HG is reversible.〈br /〉〈br /〉〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3836459/" target="_blank"〉〈img src="https://static.pubmed.gov/portal/portal3rc.fcgi/4089621/img/3977009" border="0"〉〈/a〉   〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3836459/" target="_blank"〉This paper as free author manuscript - peer-reviewed and accepted for publication〈/a〉〈br /〉〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Losman, Julie-Aurore -- Looper, Ryan E -- Koivunen, Peppi -- Lee, Sungwoo -- Schneider, Rebekka K -- McMahon, Christine -- Cowley, Glenn S -- Root, David E -- Ebert, Benjamin L -- Kaelin, William G Jr -- P30 DK049216/DK/NIDDK NIH HHS/ -- R01 CA068490/CA/NCI NIH HHS/ -- Howard Hughes Medical Institute/ -- New York, N.Y. -- Science. 2013 Mar 29;339(6127):1621-5. doi: 10.1126/science.1231677. Epub 2013 Feb 7.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, MA 02215, USA.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/23393090" target="_blank"〉PubMed〈/a〉
    Keywords: Cell Line, Tumor ; Cell Transformation, Neoplastic/genetics/*metabolism ; Glutarates/*metabolism ; *Hematopoiesis ; Humans ; Isocitrate Dehydrogenase/genetics/*metabolism ; Leukemia/*enzymology/genetics ; Models, Biological ; Procollagen-Proline Dioxygenase/*antagonists & inhibitors
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...