ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
Filter
  • Copernicus  (5)
  • INGV  (3)
  • Agu  (1)
Collection
Years
  • 1
    Publication Date: 2017-04-04
    Description: Methane plays an important role in the Earth’s atmospheric chemistry and radiative balance being the second most important greenhouse gas after carbon dioxide. Methane is released to the atmosphere by a wide number of sources, both natural and anthropogenic, with the latter being twice as large as the former (IPCC, 2007). It has recently been established that significant amounts of geological methane, produced within the Earth’s crust, are currently released naturally into the atmosphere (Etiope, 2004). Active or recent volcanic/geothermal areas represent one of these sources of geological methane. But due to the fact that methane flux measurements are laboratory intensive, very few data have been collected until now and the contribution of this source has been generally indirectly estimated (Etiope et al., 2007). The Greek territory is geodynamically very active and has many volcanic and geothermal areas. Here we report on methane flux measurements made at two volcanic/geothermal systems along the South Aegean volcanic arc: Sousaki and Nisyros. The former is an extinct volcanic area of Plio-Pleistocene age hosting nowadays a low enthalpy geothermal field. The latter is a currently quiescent active volcanic system with strong fumarolic activity due to the presence of a high enthalpy geothermal system. Both systems have gas manifestations that emit significant amounts of hydrothermal methane and display important diffuse carbon dioxide emissions from the soils. New data on methane isotopic composition and higher hydrocarbon contents point to an abiogenic origin of the hydrothermal methane in the studied systems. Measured methane flux values range from –48 to 29,000 (38 sites) and from –20 to 1100 mg/mˆ2/d (35 sites) at Sousaki and Nisyros respectively. At Sousaki measurement sites covered almost all the degassing area and the diffuse methane output can be estimated in about 20 t/a from a surface of about 10,000 mˆ2. At Nisyros measurements covered the Stephanos and Kaminakia areas, which represent only a part of the entire degassing area. The two areas show very different methane degassing pattern with latter showing much higher flux values. Methane output can be estimated in about 0.25 t/a from an area of about 30,000 mˆ2 at Stephanos and about 1 t/a from an area of about 20,000 mˆ2 at Kaminakia. The total output from the entire geothermal system of Nisyros probably should not exceed 2 t/a.
    Description: Published
    Description: Vienna, Austria
    Description: 4.5. Studi sul degassamento naturale e sui gas petroliferi
    Description: open
    Keywords: methane output ; diffuse degassing ; volcanic/hydrothermal systems ; Greece ; 01. Atmosphere::01.01. Atmosphere::01.01.03. Pollution ; 01. Atmosphere::01.01. Atmosphere::01.01.07. Volcanic effects ; 04. Solid Earth::04.08. Volcanology::04.08.01. Gases ; 05. General::05.02. Data dissemination::05.02.01. Geochemical data ; 05. General::05.08. Risk::05.08.01. Environmental risk
    Repository Name: Istituto Nazionale di Geofisica e Vulcanologia (INGV)
    Type: Poster session
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 2
    Publication Date: 2017-04-04
    Description: A biomonitoring survey, above tree line level, using two endemic species (Senecio aethnensis and Rumex aethnensis) was performed on Mt. Etna, in order to evaluate the dispersion and the impact of volcanic atmospheric emissions. Samples of leaves were collected in summer 2008 from 30 sites in the upper part of the volcano (1500- 3000 m a.s.l). Acid digestion of samples was carried out with a microwave oven, and 44 elements were analyzed by using plasma spectrometry (ICP-MS and ICP-OES). The highest concentrations of all investigated elements were found in the samples collected closest to the degassing craters, and in the downwind sector, confirming that the eastern flank of Mt. Etna is the most impacted by volcanic emissions. Leaves collected along two radial transects from the active vents on the eastern flank, highlight that the levels of metals decrease one or two orders of magnitude with increasing distance from the source. This variability is higher for volatile elements (As, Bi, Cd, Cs, Pb, Sb, Tl) than for more refractory elements (Al, Ba, Sc, Si, Sr, Th, U). The two different species of plants do not show significant differences in the bioaccumulation of most of the analyzed elements, except for lanthanides, which are systematically enriched in Rumex leaves. The high concentrations of many toxic elements in the leaves allow us to consider these plants as highly tolerant species to the volcanic emissions, and suitable for biomonitoring researches in the Mt. Etna area.
    Description: Published
    Description: Vienna, Austria
    Description: 4.4. Scenari e mitigazione del rischio ambientale
    Description: open
    Keywords: Mt. Etna ; biomonitoring ; Trace elements ; 01. Atmosphere::01.01. Atmosphere::01.01.03. Pollution ; 01. Atmosphere::01.01. Atmosphere::01.01.07. Volcanic effects ; 04. Solid Earth::04.08. Volcanology::04.08.01. Gases ; 05. General::05.02. Data dissemination::05.02.01. Geochemical data ; 05. General::05.08. Risk::05.08.01. Environmental risk
    Repository Name: Istituto Nazionale di Geofisica e Vulcanologia (INGV)
    Type: Poster session
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 3
    Publication Date: 2017-04-04
    Description: Etna volcano, Italy, hosts one of the major groundwater systems of the island of Sicily. Waters circulate within highly permeable fractured, mainly hawaiitic, volcanic rocks. Aquifers are limited downwards by the underlying impermeable sedimentary terrains. Thickness of the volcanic rocks generally does not exceed some 300 m, preventing the waters to reach great depths. This is faced by short travel times (years to tens of years) and low thermalisation of the Etnean groundwaters. Measured temperatures are, in fact, generally lower than 25 °C. But the huge annual meteoric recharge (about 0.97 kmˆ3) with a high actual infiltration coefficient (0.75) implies a great underground circulation. During their travel from the summit area to the periphery of the volcano, waters acquire magmatic heat together with volcanic gases and solutes through water-rock interaction processes. In the last 20 years the Etnean aquifers has been extensively studied. Their waters were analysed for dissolved major, minor and trace element, O, H, C, S, B, Sr and He isotopes, and dissolved gas composition. These data have been published in several articles. Here, after a summary of the obtained results, the estimation of the magmatic heat flux through the aquifer will be discussed. To calculate heat uptake during subsurface circulation, for each sampling point (spring, well or drainage gallery) the following data have been considered: flow rate, water temperature, and oxygen isotopic composition. The latter was used to calculate the mean recharge altitude through the measured local isotopic lapse rate. Mean recharge temperatures, weighted for rain amount throughout the year, were obtained from the local weather station network. Calculations were made for a representative number of sampling points (216) including all major issues and corresponding to a total water flow of about 0.315 kmˆ3/a, which is 40% of the effective meteoric recharge. Results gave a total energy output of about 140 MW/a the half of which is ascribable to only 13 sampling points. These correspond to the highest flow drainage galleries with fluxes ranging from 50 to 1000 l/s and wells with pumping rates from 70 to 250 l/s. Geographical distribution indicates that, like magmatic gas leakage, heat flow is influenced by structural features of the volcanic edifice. The major heat discharge through groundwater are all tightly connected either to the major regional tectonic systems or to the major volcanic rift zones along which the most important flank eruptions take place. But rift zones are much more important for heat upraise due to the frequent dikes injection than for gas escape because generally when dikes have been emplaced the structure is no more permeable to gases because it becomes sealed by the cooling magma.
    Description: Published
    Description: Vienna, Austria
    Description: 1.2. TTC - Sorveglianza geochimica delle aree vulcaniche attive
    Description: open
    Keywords: groundwaters ; volcanic surveillance ; water chemistry ; dissolved gases ; 03. Hydrosphere::03.02. Hydrology::03.02.03. Groundwater processes ; 03. Hydrosphere::03.02. Hydrology::03.02.04. Measurements and monitoring ; 03. Hydrosphere::03.04. Chemical and biological::03.04.03. Chemistry of waters ; 03. Hydrosphere::03.04. Chemical and biological::03.04.05. Gases ; 03. Hydrosphere::03.04. Chemical and biological::03.04.06. Hydrothermal systems
    Repository Name: Istituto Nazionale di Geofisica e Vulcanologia (INGV)
    Type: Oral presentation
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 4
    Publication Date: 2017-04-04
    Description: Volcanoes represent an important natural source of several trace elements to the atmosphere. For some species (e.g., As, Cd, Pb and Se) they may be the main natural source and thereby strongly influencing geochemical cycles from the local to the global scale. Mount Etna is one of the most actively degassing volcanoes in the world, and it is considered to be, on the long-term average, the major atmospheric point source of many environmental harmful compounds. Their emission occurs either through continuous passive degassing from open-conduit activity or through sporadic paroxysmal eruptive activity, in the form of gases, aerosols or particulate. To estimate the environmental impact of magma-derived trace metals and their depositions processes, rainwater and snow samples were collected at Mount Etna area. Five bulk collectors have been deployed at various altitudes on the upper flanks around the summit craters of the volcano; samples were collected every two week for a period of one year and analyzed for the main chemical-physical parameters (electric conductivity and pH) and for major and trace elements concentrations. Chemical analysis of rainwater clearly shows that the volcanic contribution is always prevailing in the sampling site closest to the summit crater (about 1.5 km). In the distal sites (5.5-10 km from the summit) and downwind of the summit craters, the volcanic contribution is also detectable but often overwhelmed by anthropogenic or other natural (seawater spray, geogenic dust) contributions. Volcanic contribution may derive from both dry and wet deposition of gases and aerosols from the volcanic plume, but sometimes also from leaching of freshly emitted volcanic ashes. In fact, in our background site (7.5 km in the upwind direction) volcanic contribution has been detected only following an ash deposition event. About 30 samples of fresh snow were collected in the upper part of the volcano, during the winters 2006 and 2007 to estimate deposition processes at high altitude during cold periods. Some of the samples were collected immediately after a major explosive event from the summit craters to understand the interaction between snow and fresh erupted ash. Sulphur, Chlorine and Fluorine, are the major elements that prevailingly characterize the volcanic contribution in atmospheric precipitation on Mount Etna, but high concentrations of many trace elements are also detected in the studied samples. In particular, bulk deposition samples display high concentration of Al, Fe, Ti, Cu, As, Rb, Pb, Tl, Cd, Cr, U and Ag, in the site most exposed to the volcanic emissions: median concentration values are about two orders of magnitude higher than those measured in our background site. Also in the snow samples the volcanic signature is clearly detectable and decreases with distance from the summit craters. Some of the analysed elements display very high enrichment values with respect to the average crust and, in the closest site to the summit craters, also deposition values higher than those measured in polluted urban or industrial sites.
    Description: Published
    Description: Vienna, Austria
    Description: 4.5. Degassamento naturale
    Description: open
    Keywords: Mt. Etna ; trace elements ; rainwater ; 01. Atmosphere::01.01. Atmosphere::01.01.07. Volcanic effects ; 03. Hydrosphere::03.03. Physical::03.03.01. Air/water/earth interactions ; 03. Hydrosphere::03.04. Chemical and biological::03.04.03. Chemistry of waters
    Repository Name: Istituto Nazionale di Geofisica e Vulcanologia (INGV)
    Type: Oral presentation
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 5
    Publication Date: 2017-04-04
    Description: Improving the constraints on the atmospheric fate and depletion rates of acidic compounds persistently emitted by non-erupting (quiescent) volcanoes is important for quantitatively predicting the environmental impact of volcanic gas plumes. Here, we present new experimental data coupled with modelling studies to investigate the chemical processing of acidic volcanogenic species during tropospheric dispersion. Diffusive tube samplers were deployed at Mount Etna, a very active open-conduit basaltic volcano in eastern Sicily, and Vulcano Island, a closed-conduit quiescent volcano in the Aeolian Islands (northern Sicily). Sulphur dioxide (SO2), hydrogen sulphide (H2S), hydrogen chloride (HCl) and hydrogen fluoride (HF) concentrations in the volcanic plumes (typically several minutes to a few hours old) were repeatedly determined at distances from the summit vents ranging from 0.1 to ~10 km, and under different environmental conditions. At both volcanoes, acidic gas concentrations were found to decrease exponentially with distance from the summit vents (e.g., SO2 decreases from ~10,000 μg/m3 at 0.1 km from Etna’s vents down to ~7 _μg/m3 at ~10km distance), reflecting the atmospheric dilution of the plume within the acid gas-free background troposphere. Conversely, SO2/HCl, SO2/HF, and SO2/H2S ratios in the plume showed no systematic changes with plume aging, and fit source compositions within analytical error. Assuming that SO2 losses by reaction are small during short-range atmospheric transport within quiescent (ash-free) volcanic plumes, our observations suggest that, for these short transport distances, atmospheric reactions for H2S and halogens are also negligible. The one-dimensional model MISTRA was used to simulate quantitatively the evolution of halogen and sulphur compounds in the plume of Mt. Etna. Model predictions support the hypothesis of minor HCl chemical processing during plume transport, at least in cloud-free conditions. Larger variations in the modelled SO2/HCl ratios were predicted under cloudy conditions, due to heterogeneous chlorine cycling in the aerosol phase. The modelled evolution of the SO2/H2S ratios is found to be substantially dependent on whether or not the interactions of H2S with halogens are included in the model. In the former case, H2S is assumed to be oxidized in the atmosphere mainly by OH, which results in minor chemical loss for H2S during plume aging and produces a fair match between modelled and measured SO2/H2S ratios. In the latter case, fast oxidation of H2S by Cl leads to H2S chemical lifetimes in the early plume of a few seconds, and thus SO2 to H2S ratios that increase sharply during plume transport. This disagreement between modelled and observed plume compositions suggests that more in-detail kinetic investigations are required for a proper evaluation of H2S chemical processing in volcanic plumes.
    Description: Published
    Description: 1441-1450
    Description: 1.2. TTC - Sorveglianza geochimica delle aree vulcaniche attive
    Description: 4.5. Degassamento naturale
    Description: JCR Journal
    Description: open
    Keywords: Mt. Etna ; volcanic gas plumes ; tropospheric processing ; 01. Atmosphere::01.01. Atmosphere::01.01.07. Volcanic effects
    Repository Name: Istituto Nazionale di Geofisica e Vulcanologia (INGV)
    Type: article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 6
    Publication Date: 2017-04-04
    Description: Volcanic emissions are considered one of the major natural sources of several trace metals (e.g. As, Cd, Cu, Pb, and Zn) to the atmosphere [Nriagu, 1989], and the geochemical cycles of these elements have to be considered strongly influenced by volcanic input. However, the accurate estimation of the global volcanic emissions of volatile trace metals into the atmosphere is still affected by a high level of uncertainty. The latter depends on the large variability in the emission of the different volcanoes, and on their changing stage of activity. Moreover, only few of the potential sources in the world have been directly measured [Hinkley et al. 1999]. Atmospheric deposition processes (wet and dry) are the pathways through which volcanic emissions return to the ground (soils, plants, aquifers), resulting in both harmful and beneficial effects [Baxter et al. 1982; Aiuppa et al. 2000; Brusca et al. 2001; Delmelle, 2003; Bellomo et al. 2007; Martin et al. 2009; Floor et al. 2011; Calabrese et al. 2011]. In the first part of this study we present the results of a literature review on trace metals emissions from active volcanoes around the world. In the second part, we present new data on the fluxes of the trace metals from Etna (Italy) and four active volcanoes in the world: Turrialba (Costarica), Nyiragongo (DRC), Mutnovsky and Gorely (Kamchatka). We found 27 publications (the first dating back to the 70’s), 13 of which relate to the Etna and the other include some of the world’s most active volcanoes: Mt. St. Helens, Erebus, Merapi, White Island, Kilauea, Popocatepetl, Galeras, Indonesian arc, Satasuma and Masaya. The review shows that currently there are very few data available, and that the most studied volcano is Mt. Etna. Using these data, we defined a range of fluxes for As, Ba, Bi, Cd, Cu, Fe, Mn, Pb, Se, V and Zn (Figure 1). To obtain new data we sampled particulate filters at the five above mentioned volcanoes. Filters were mineralized (acid digestion) and analyzed by ICP-MS. Sulphur to trace element ratios were related to sulphur fluxes to indirectly estimate trace elements fluxes. Etna confirms to be one of the greatest point sources in the world. The Nyiragongo results to be also a significant source of metals to the atmosphere, especially considering its persistent state of degassing from the lava lake. Also Turrialba and Gorely have high emission rates of trace metals considering the global range. Only Mutnovsky Volcano show values which are sometimes lower than the range obtained from the review, consistent with the fact that it is mainly a fumarolic field. This work highlights the need to expand the current dataset including many other active volcanoes for a better constraint of global trace metal fluxes from active volcanoes.
    Description: Published
    Description: Nicolosi (Catania)
    Description: 1.2. TTC - Sorveglianza geochimica delle aree vulcaniche attive
    Description: open
    Keywords: Volcanic degassing ; trace elements ; environmental impact of volcanic activity ; 01. Atmosphere::01.01. Atmosphere::01.01.07. Volcanic effects ; 04. Solid Earth::04.08. Volcanology::04.08.01. Gases ; 04. Solid Earth::04.08. Volcanology::04.08.08. Volcanic risk
    Repository Name: Istituto Nazionale di Geofisica e Vulcanologia (INGV)
    Type: Oral presentation
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 7
    Publication Date: 2017-04-04
    Description: Acidification of seawater is one of the aspect tightly linked to volcanic risk, due to the presence of submarine vents releasing abundant volcanic fluids. In aquatic system CO2 gas dissolves, hydrates and dissociates to form weak carbonic acid, which is the main driver of natural weathering reactions [Drever, 1997]. The result of the CO2 increase is seawater acidification. Vulcano Island, the southernmost of Aeolian Islands, is located in the Southern Tyrrhenian Sea (Italy), approximately 18 miles off the NE coast of Sicily. The Baia di Levante can be considered a natural laboratory where almost all of the biogeochemical processes related to the ocean acidification can be studied. In this area many submarine vents release CO2. Four geochemical surveys of the Bay were carried out in April - September 2011 and May - June 2012. The main physic-chemical parameters (T, pH, Eh, electric conductivity) were measured at more than 70 sites and more than 40 samples for chemical analyses were collected at representative points. Major (Na, K, Mg, Ca, Cl, SO4) and some minor components (B, Sr, Fe) and trace elements (Mn, Mo, Al, U, Ce, Pb, Tm, Tb, Nd, Th) dissolved in water, the chemical composition of dissolved gases (He, H2, O2, N2, CH4 and CO2) and the isotopic composition of total dissolved inorganic carbon were determined in the laboratory. The bubbling CO2 produces a strong decrease in pH from the normal seawater value of 8.2 down to 5.5 (Figure 1). In the area close to the main degassing vents, characterized by very low pH, macroorganisms were absent. Acidification of sea water is one of the aspect tightly linked to volcanic risk, due to the presence of submarine vents releasing abundant volcanic fluids. At Baia di Levante, about 300 m from the main vents the seawater is only slightly acidic (pH 6.5 - 7.0) resembling the ocean water conditions in equilibrium with the high atmospheric CO2 concentrations expected in the near future. Therefore environments like this, naturally enriched in CO2, are good laboratories to study the consequences of ocean acidification on aquatic biota [Doney et al., 2009]. Furthermore acidification is tightly linked with the mobility and bio-availability of heavy metals [Millero et al., 2009] in sea water and volcanoes were always the favourite choice for human settlements; as a consequence economic anthropological activity, such as fishing, could be dangerous for human health, because of the presence toxic level of trace metals in the food chain due to the presence of the volcano’s. The present study could provide important information about the best environmental management of volcanic areas such as Vulcano Island
    Description: Published
    Description: Nicolosi (Catania)
    Description: 1.2. TTC - Sorveglianza geochimica delle aree vulcaniche attive
    Description: open
    Keywords: ocean acidification ; environmental impact of volcanic activity ; volcanic gases ; trace elements ; 03. Hydrosphere::03.04. Chemical and biological::03.04.01. Biogeochemical cycles ; 03. Hydrosphere::03.04. Chemical and biological::03.04.03. Chemistry of waters ; 03. Hydrosphere::03.04. Chemical and biological::03.04.05. Gases
    Repository Name: Istituto Nazionale di Geofisica e Vulcanologia (INGV)
    Type: Extended abstract
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 8
    Publication Date: 2017-04-04
    Description: Volcanic emissions represent one of the most relevant natural sources of trace elements to the troposphere, both during and between eruptions. Due to their potential toxicity they may have important environmental impacts from the local to the global scale. Mount Etna, the largest European volcano and one of the most active volcano in the world, covers an area of about 1250 km2 and reaches an altitude of about 3340 m. It has been persistently active during historical time, with frequent paroxysmal episodes separated by passive degassing periods. Atmospheric precipitation was collected approximately every two weeks, from April 2006 to December 2007, using a network of five rain gauges, located at various altitudes on the upper flanks around the summit craters of Etna Volcano. The collected samples were analysed for major (Ca, Mg, K, Na, F, SO4, Cl, NO3) and a large suite of trace elements (Ag, Al, As, Au, B, Ba, Be, Bi, Cd, Co, Cr, Cs, Cu, Fe, Hg, La, Li, Mn, Mo, Ni, Pb, Rb, Si, Sb, Sc, Se, Sr, Th, Ti, Tl, U, V, Zn) by using different techniques (IC, SPEC, ICP-MS and CV-AFS). The monitoring of atmospheric deposition gave the opportunity to occasionally sample volcanic fresh ashes emitted by the volcano during the paroxysmal events. This was possible because the network of five rain gauges were equipped with a filter-system to block the coarse material. In this way, more than twenty events of ashfall were collected. Unfortunately, only half of these samples were suitable for a complete chemical analysis, because of the small amount of sample. In order to obtain elemental chemical composition of ashes, powdered samples were analysed by a combination of methods, including X-ray Fluorescence Spectroscopy (XRF), total digestion followed by Inductively Coupled Plasma Emission Mass Spectrometry (ICP-MS), Instrumental Neutron Activation Analysis (INAA), and infrared detection (IR). The chemistry of rainwater reveals that most of the investigated elements have higher concentrations close to the emission vent of the volcano, confirming the prevailing volcanic contribution. Rainwater composition clearly reflects the volcanic plume input. Ash-normalised rainwater composition indicates a contrasting behaviour between volatile elements, which are highly-enriched in rainwater, and refractory elements, which have low rainwater/ash concentration ratios. The degree of interaction between collected ash and rainwater was variable, depending on several factors: (i) the length of the period in which tephra was present in the sampler (the ash fall may have occurred any day from the first to the last day of the rain collecting period); (ii) the amount of rainwater fallen on the collectors after the ash-fall event, and its acidity; (iii) the granulometry of the ash samples that was widely variable (from few centimetres to micrometric particles) increasing the interaction with decreasing dimensions of the grains; (iv) the distance of collector with respect to the craters. In order to investigate the role of volcanic ash on the evolution of the rainwater chemistry, absolute concentrations of rain and ash were plotted in binary plot diagrams (Figure 1). Each diagram corresponds to a single event, and pH and TDS of the solution collected is reported. The diagonal bars in the diagrams represent the rain/ash ratios (1:1 and 1:10000). The results confirm that sulphate and halide salt aerosols are adsorbed onto ash particles, and their rate of dissolution in rainwater depends on solubility. Moreover, rapid chemical weathering of the silicate glass by volcanic acid (SO2, HCl and HF) can also explain the enrichment of several refractory elements (Na, K, Ca, Mg, Si, Al, Fe, Ti, Sc). Our observations highlight how explosive activity can increase enormously the deposition rate of several chemical elements, up to several km away from the emission vents.
    Description: Published
    Description: Nicolosi (Catania)
    Description: 1.2. TTC - Sorveglianza geochimica delle aree vulcaniche attive
    Description: open
    Keywords: volcanic ash ; trace elements ; environmental impact of volcanic activity ; rainwater chemistry ; 01. Atmosphere::01.01. Atmosphere::01.01.07. Volcanic effects ; 04. Solid Earth::04.08. Volcanology::04.08.01. Gases ; 04. Solid Earth::04.08. Volcanology::04.08.08. Volcanic risk
    Repository Name: Istituto Nazionale di Geofisica e Vulcanologia (INGV)
    Type: Extended abstract
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 9
    Publication Date: 2017-10-06
    Description: We report first data on chemical composition of the gas emitted by the geothermal system of Sousaki, Greece. Gas manifestations display typical geothermal gas composition with CO2 as the main component and CH4 and H2S as minor species. Soil gas composition derives from the mixing of two end-members (atmospheric air and geothermal gas). Soil CO2 fluxes range from〈2 to 33,400 g m 2 d 1. The estimated diffuse output of hydrothermal CO2, estimated for an area of 0.015 km2, is about 630 g s 1, while a tentative estimation of CH4 diffuse output gave a value of about 1.15 g s 1. Point sources accounted for lower flux values of 26 g s 1 of CO2, 0.1 g s 1 of CH4 and 0.02 g s 1 of H2S.
    Description: Published
    Description: L05307
    Description: JCR Journal
    Description: reserved
    Keywords: carbon dioxide ; methane emissions ; geothermal system, ; 03. Hydrosphere::03.04. Chemical and biological::03.04.06. Hydrothermal systems
    Repository Name: Istituto Nazionale di Geofisica e Vulcanologia (INGV)
    Type: article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...