ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    Publication Date: 2017-04-07
    Description: The subpolar North Atlantic (SPNA) is important in the global carbon cycle because of the deep water ventilation processes that lead to both high uptake of atmospheric CO2 and large inventories of anthropogenic CO2 (Cant). Thus, it is crucial to understand its response to increasing anthropogenic pressures. In this work, the budgets of dissolved inorganic carbon (DIC), Cant and natural DIC (DICnat) in the eastern SPNA in the 2000s, are jointly analyzed using in situ data. The DICnat budget is found to be in steady state, confirming a long-standing hypothesis from in situ data for the first time. The biological activity is driving the uptake of natural CO2 from the atmosphere. The Cant increase in the ocean is solely responsible of the DIC storage rate which is explained by advection of Cant from the subtropics (65%) and Cant air-sea flux (35%). These results demonstrate that the Cant is accumulating in the SPNA without affecting the natural carbon cycle.
    Type: Article , PeerReviewed , info:eu-repo/semantics/article
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 2
    Publication Date: 2024-02-07
    Description: This contribution to the RECCAP2 (REgional Carbon Cycle Assessment and Processes) assessment analyzes the processes that determine the global ocean carbon sink, and its trends and variability over the period 1985-2018, using a combination of models and observation-based products. The mean sea-air CO2 flux from 1985 to 2018 is -1.6 +/- 0.2 PgC yr(-1) based on an ensemble of reconstructions of the history of sea surface pCO(2) (pCO(2) products). Models indicate that the dominant component of this flux is the net oceanic uptake of anthropogenic CO2, which is estimated at -2.1 +/- 0.3 PgC yr(-1) by an ensemble of ocean biogeochemical models, and -2.4 +/- 0.1 PgC yr(-1) by two ocean circulation inverse models. The ocean also degasses about 0.65 +/- 0.3 PgC yr(-1) of terrestrially derived CO2, but this process is not fully resolved by any of the models used here. From 2001 to 2018, the pCO2 products reconstruct a trend in the ocean carbon sink of -0.61 +/- 0.12 PgC yr(-1) decade(-1), while biogeochemical models and inverse models diagnose an anthropogenic CO2-driven trend of -0.34 +/- 0.06 and -0.41 +/- 0.03 PgC yr(-1) decade(-1), respectively. This implies a climate-forced acceleration of the ocean carbon sink in recent decades, but there are still large uncertainties on the magnitude and cause of this trend. The interannual to decadal variability of the global carbon sink is mainly driven by climate variability, with the climate-driven variability exceeding the CO2-forced variability by 2-3 times. These results suggest that anthropogenic CO2 dominates the ocean CO2 sink, while climate-driven variability is potentially large but highly uncertain and not consistently captured across different methods.
    Type: Article , PeerReviewed
    Format: text
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...