ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
Filter
  • AGU  (1)
  • IOP Science  (1)
  • National Academy of Sciences  (1)
  • 1
    Publication Date: 2020-08-10
    Description: Northern peatlands have accumulated large stocks of organic carbon (C) and nitrogen (N), but their spatial distribution and vulnerability to climate warming remain uncertain. Here, we used machine-learning techniques with extensive peat core data (n〉 7,000) to create observation-based maps of northern peatland C and N stocks, and to assess their response to warming and permafrost thaw. We estimate that northern peatlands cover 3.7 ± 0.5 million km2and store 415 ± 150 Pg C and 10 ± 7 Pg N. Nearly half of the peatland area and peat C stocks are permafrost affected. Using modeled global warming stabilization scenarios (from 1.5 to 6 °C warming), we project that the current sink of atmospheric C (0.10 ± 0.02 Pg C⋅y−1) in northern peatlands will shift to a C source as 0.8 to 1.9 million km2of permafrost-affected peatlands thaw. The projected thaw would cause peatland greenhouse gas emissions equal to ∼1% of anthropogenic radiative forcing in this century. The main forcing is from methane emissions (0.7 to 3 Pg cumulative CH4-C) with smaller carbon dioxide forcing (1 to 2 Pg CO2-C) and minor nitrous oxide losses. We project that initial CO2-C losses reverse after ∼200 y, as warming strengthens peatland C-sinks. We project substantial, but highly uncertain, additional losses of peat into fluvial systems of 10 to 30 Pg C and 0.4 to 0.9 Pg N. The combined gaseous and fluvial peatland C loss estimated here adds 30 to 50% onto previous estimates of permafrost-thaw C losses, with southern permafrost regions being the most vulnerable.
    Print ISSN: 0027-8424
    Electronic ISSN: 1091-6490
    Topics: Biology , Medicine , Natural Sciences in General
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 2
    Publication Date: 2020-11-15
    Description: Soils are warming as air temperatures rise across the Arctic and Boreal region concurrent with the expansion of tall-statured shrubs and trees in the tundra. Changes in vegetation structure and function are expected to alter soil thermal regimes, thereby modifying climate feedbacks related to permafrost thaw and carbon cycling. However, current understanding of vegetation impacts on soil temperature is limited to local or regional scales and lacks the generality necessary to predict soil warming and permafrost stability on a pan-Arctic scale. Here we synthesize shallow soil and air temperature observations with broad spatial and temporal coverage collected across 106 sites representing nine different vegetation types in the permafrost region. We showed ecosystems with tall-statured shrubs and trees (〉 40 cm) have warmer shallow soils than those with short-statured tundra vegetation when normalized to a constant air temperature. In tree and tall shrub vegetation types, cooler temperatures in the warm season do not lead to cooler mean annual soil temperature indicating that ground thermal regimes in the cold-season rather than the warm-season are most critical for predicting soil warming in ecosystems underlain by permafrost. Our results suggest that the expansion of tall shrubs and trees into tundra regions can amplify shallow soil warming, and could increase the potential for increased seasonal thaw depth and increase soil carbon cycling rates and lead to increased carbon dioxide loss and further permafrost thaw.
    Repository Name: EPIC Alfred Wegener Institut
    Type: Article , isiRev
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 3
    Publication Date: 2016-12-25
    Description: Permafrost regions have been identified to host a soil organic carbon (C) pool of global importance, storing more than 1500 PgC. A large portion of this C pool is currently frozen in deep soils and permafrost deposits. Permafrost thaw hence may result in mobilization of large amounts of C as greenhouse gases, dissolved organic C, or particulate organic matter, with substantial impacts on C cycling and C pool distribution. Understanding potential consequences and feedbacks of permafrost degradation therefore requires better quantification of processes and landforms related to thaw. While many predictive land surface models so far consider a gradual increase in the average active layer thickness across the permafrost domain, rapid shifts in landscape topography and surface hydrology caused by thaw of ice-rich permafrost are much more difficult to project. Field studies of thermokarst and thermo-erosion indicate highly complex and rapid landscape-ecosystem feedbacks. Contrary to top-down permafrost thaw that may affect any permafrost type at the surface, both thermokarst and thermo-erosion are considered pulse disturbances that are closely linked to presence of near-surface ice-rich permafrost, are active on short sub-annual to decadal time scales, and may affect C stores tens of meters deep. Here we present a comprehensive review synthesizing measured and modeled rates of thermokarst and thermo-erosion processes from the scientific literature and own observations across the northern Hemisphere permafrost regions. The goal of our synthesis is (1) to provide an overview on the range of thermokarst and thermo-erosion rates that may be used for parameterization of thermokarst and thermo-erosion in ecosystem and landscape models; and (2) to assess simple back-of-the-envelope scenarios of the magnitude of C thaw due to thermokarst and thermo-erosion versus projected active layer thickening. Example scenarios considering thermokarst lake expansion and talik growth indicate that rapid thaw processes have a high possibility to contribute substantially to permafrost C mobilization over the coming century.
    Repository Name: EPIC Alfred Wegener Institut
    Type: Conference , notRev
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...