ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
Filter
  • Articles  (7)
  • BIRKHAUSER VERLAG AG  (2)
  • COPERNICUS GESELLSCHAFT MBH  (2)
  • AARI  (1)
  • EGU  (1)
  • NATURE PUBLISHING GROUP
  • 1
    facet.materialart.
    Unknown
    EGU
    In:  EPIC3EGU, meeting of the European Geophysical Union, Wien, 2014-04-28-2014-05-02Viena, EGU
    Publication Date: 2014-05-19
    Description: Rivers represent a transition zone between terrestric and aquatic environments, as well as a transition zone between methane rich and methane poor environments. Methane concentrations in freshwater systems are in general higher than in marine systems. The Elbe River is one of the important rivers draining into the North Sea, as is the Lena River draining into the Laptev Sea. High methane concentrations have been observed within both rivers, and additional hot spots in the Lena Delta. However due to different stratification patterns in the mixing zones, the further fate of methane in the North Sea and the Laptev Sea is different. Methane consuming bacteria are known from both environments. However, in the transition zone between marine and limnic systems the shift in salinity imposes an osmotic stress for most organisms. In this study we want to compare the environmental data obtained in both estuaries with the methane oxidation to elucidate the efficiency of the respective methane oxidizing bacteria.
    Repository Name: EPIC Alfred Wegener Institut
    Type: Conference , notRev
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 2
    facet.materialart.
    Unknown
    BIRKHAUSER VERLAG AG
    In:  EPIC3Aquatic Sciences, BIRKHAUSER VERLAG AG, 81(: 12), ISSN: 1015-1621
    Publication Date: 2019-01-29
    Description: We conducted multiple small (2011–2012) and one large sampling campaign (2013) at selected profiles along the Elbe River. With the data we were able to outline spatial and temporal variability of methane concentration, oxidation and emissions in one of the major rivers of Central Europe. The highest methane concentrations were found in human-altered riverine habitats, i.e., in a harbor (1,888 nmol L−1), in a lock and weirs (1409 ± 1545 nmol L−1), and in general in the whole “impounded” river segment (383 ± 215 nmol L−1). On the other hand, the lowest methane concentrations were found in the “lowland” river segment (86 ± 56 nmol L−1). The methane oxidation rate was more efficient in the “natural” segment (71 ± 113 nmol L−1day−1, which means a turnover time of 49 ± 83 day−1) than in the “lowland” segment (4 ± 3 nmol L−1day−1, which means a turnover time of 39 ± 45 day−1). Methane emissions from the surface water into the atmosphere ranged from 0.4 to 11.9 mg m−2 day−1 (mean 2.1 ± 0.6 mg m−2 day−1) with the highest CH4 emissions at the Meissen harbor (94 kg CH4 year−1). Such human-altered riverine habitats (i.e., harbors and similar) have not been taken into consideration in the CH4 budget before, despite them being part of the river ecosystems, they may be significant CH4 hot-spots. The total CH4 diffusive flux from the whole Elbe was estimated to be approximately 97 t CH4 year−1.
    Repository Name: EPIC Alfred Wegener Institut
    Type: Article , isiRev
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 3
    facet.materialart.
    Unknown
    COPERNICUS GESELLSCHAFT MBH
    In:  EPIC3Biogeosciences, COPERNICUS GESELLSCHAFT MBH, 14, pp. 4985-5002, ISSN: 1726-4170
    Publication Date: 2017-11-10
    Description: The Lena River is one of the largest Russian rivers draining into the Laptev Sea. The predicted increases in global temperatures are expected to cause the permafrost areas surrounding the Lena Delta to melt at increasing rates. This melting will result in high amounts of methane reaching the waters of the Lena and the adjacent Laptev Sea. The only biological sink that can lower methane concentrations within this system is methane oxidation by methanotrophic bacteria. However, the polar estuary of the Lena River, due to its strong fluctuations in salinity and temperature, is a challenging environment for bacteria. We determined the activity and abundance of aerobic methanotrophic bacteria by a tracer method and by the quantitative polymerase chain reaction. We described the methanotrophic population with a molecular fingerprinting method (monooxygenase intergenic spacer analysis), as well as the methane distribution (via a headspace method) and other abiotic parameters, in the Lena Delta in September 2013. The median methane concentrations were 22 nmol L−1 for riverine water (salinity (S)  〈 5), 19 nmol L−1 for mixed water (5 〈 S 〈 20) and 28 nmol L−1 for polar water (S 〉 20). The Lena River was not the source of methane in surface water, and the methane concentrations of the bottom water were mainly influenced by the methane concentration in surface sediments. However, the bacterial populations of the riverine and polar waters showed similar methane oxidation rates (0.419 and 0.400 nmol L−1 d−1), despite a higher relative abundance of methanotrophs and a higher estimated diversity in the riverine water than in the polar water. The methane turnover times ranged from 167 days in mixed water and 91 days in riverine water to only 36 days in polar water. The environmental parameters influencing the methane oxidation rate and the methanotrophic population also differed between the water masses. We postulate the presence of a riverine methanotrophic population that is limited by sub-optimal temperatures and substrate concentrations and a polar methanotrophic population that is well adapted to the cold and methane-poor polar environment but limited by a lack of nitrogen. The diffusive methane flux into the atmosphere ranged from 4 to 163 µmol m2 d−1 (median 24). The diffusive methane flux accounted for a loss of 8 % of the total methane inventory of the investigated area, whereas the methanotrophic bacteria consumed only 1 % of this methane inventory. Our results underscore the importance of measuring the methane oxidation activities in polar estuaries, and they indicate a population-level differentiation between riverine and polar water methanotrophs.
    Repository Name: EPIC Alfred Wegener Institut
    Type: Article , isiRev
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 4
    Publication Date: 2015-12-15
    Description: Large amounts of the greenhouse gas methane are released from the seabed but liberation of methane to the atmosphere is mitigated by aerobic methanotrophs in the water column. The size and activity of methanotrophic communities are thought to be mainly determined by nutrient and redox dynamics, but little is known about the effects of water mass transport. Here, we show that cold bottom waters at methane seeps west off Svalbard, which contained a large number of aerobic methanotrophs, were rapidly displaced by warmer waters with a considerably smaller methanotrophic community. This water mass exchange, caused by short-term variations of the West Spitsbergen Current strongly reduced methanotrophic activity. Currents are common at many methane seeps and could thus be a globally important control on methane oxidation in the water column.
    Repository Name: EPIC Alfred Wegener Institut
    Type: Article , isiRev
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 5
    facet.materialart.
    Unknown
    AARI
    In:  EPIC320 years of Terrestrial Research in the Siberian Arctic, St. Petersburg, Russia, 2018-10-17-2018-10-19St. Petersburg, AARI
    Publication Date: 2018-12-18
    Description: Permafrost thaw affects global climate, the land surface and coastal structures. Under subaquatic conditions, permafrost thaw is often more rapid than on land. The thaw depth below water bodies (taliks) and changes in biogeochemical gradients are difficult to predict. The influence of taliks and biogeochemical gradients on the production and release of the greenhouse gases methane and carbon dioxide is not clear yet. Although our research in this region has produced multi-decadal data sets, most of our knowledge on the methane cycle pertains only to the summer. We focus on water bodies in the Lena Delta region, including thermokarst ponds, lakes, lagoons and the marine shoreface. For most of the year, however, ice covers these water bodies, creating a barrier between the water column and the atmosphere, and changing benthic conditions. It is therefore important to assess methane-related processes during the ice-covered season. In spring 2017 we investigated the Lena Delta and Tiksi Bay at the end of winter, while still ice-covered. Thirty ice cores of different water bodies were obtained by Kovacs ice corer. The in situ temperature of the ice cores was measured immediately afterwards. Methane oxidation rates were determined with radio tracer method in melted ice core samples. Analyses of methane concentration and further hydrochemical analyses are on their way. Initial results indicate rather low activities of methane oxidation in the ice cores, but active biological processes in the water below.
    Repository Name: EPIC Alfred Wegener Institut
    Type: Conference , notRev
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 6
    facet.materialart.
    Unknown
    BIRKHAUSER VERLAG AG
    In:  EPIC3Aquatic Sciences, BIRKHAUSER VERLAG AG, ISSN: 1015-1621
    Publication Date: 2016-10-13
    Description: Rivers represent a transition zone between terrestric and aquatic environments, and between methane rich and methane poor environments. The Elbe River is one of the most important rivers draining into the North Sea and, along with the Elbe, a potential importer of high amounts of methane into the water column of the North Sea. Twelve sampling cruises from October 2010 until June 2013 were conducted from Hamburg towards the mouth of the Elbe at Cuxhaven. The dynamic of methane concentration in the water column and its consumption via methane oxidation was measured. In addition, physico-chemical parameters were used to estimate their influence on the methanotrophic activity. We observed high methane concentrations at the stations in the area of Hamburg harbor (“inner estuary”) and about 10 times lower concentrations in the outer estuary (median of 416 versus 40 nmol/L, respectively). The methane oxidation (MOX) rate mirrored the methane distribution with high values in the inner estuary and low values in the outer estuary (median of 161 versus 10 nmol/L/d, respectively). Methane concentrations were significantly influenced by the river hydrology (falling water level) and the trophic state of the water (biological oxygen demand). In contrast to other studies no clear relation to the amount of suspended particulate matter (SPM) was found. Methane oxidation rates were significantly influenced by methane concentration and to a lesser extent by temperature. Methane oxidation accounted for 41 ± 12% of the total loss of methane in the summer/fall, but for only 5 ± 3% of the total loss in the winter/spring. We applied a modified box model taking into account the residence times of each water parcel depending on discharge and tidal impact. We observed almost stable methane concentrations in the outer estuary, despite a strong loss of methane through diffusion and oxidation. Thus, we postulate that the water column undergoes a balancing out in the outer Elbe estuary due to a strong additional input of methane, which could be provided by the extensive salt marshes near the river mouth.
    Repository Name: EPIC Alfred Wegener Institut
    Type: Article , isiRev
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 7
    facet.materialart.
    Unknown
    COPERNICUS GESELLSCHAFT MBH
    In:  EPIC3Biogeosciences, COPERNICUS GESELLSCHAFT MBH, 10, pp. 4641-4652, ISSN: 1726-4170
    Publication Date: 2019-07-17
    Description: The Lena River is one of the largest Russian rivers draining into the Laptev Sea. The permafrost areas surrounding the Lena are predicted to thaw at increasing rates due to global temperature increases. With this thawing, large amounts of carbon—either organic or in the gaseous forms, carbon dioxide and methane—will reach the waters of the Lena and the adjacent Buor Khaya Bay (Laptev Sea). Methane concentrations and the isotopic signal of methane in the waters of the Lena Delta and estuary were monitored from 2008 to 2010. Creeks draining from permafrost soils produced hotspots for methane input into the river system (median concentration 1500 nM) compared with concentrations of 30 – 85 nM observed in the main channels of the Lena. No microbial methane oxidation could be detected, thus diffusion is the main process of methane removal. We estimated that the riverine diffusive methane flux is 3 – 10 times higher than the flux from surrounding terrestric environment. To maintain the observed methane concentrations in the river, additional methane sources are necessary. The methane rich creeks could be responsible for this input. In the estuary of Buor Khaya Bay, methane concentrations decreased to 26 – 33 nM. However, within the bay no consistent temporal and spatial pattern could be observed. The methane rich waters of the river were not diluted with marine water, because of a strong stratification of the water column. Thus, methane is released from the estuary and from the river mainly by diffusion into the atmosphere
    Repository Name: EPIC Alfred Wegener Institut
    Type: Article , isiRev
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...