ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
Filter
  • American Association for the Advancement of Science (AAAS)  (2)
  • 1975-1979  (2)
  • 1
    Publication Date: 1979-08-17
    Description: Mouse spinal neurons grown in tissue culture were used to study the membrane effects of the benzodiazepine flurazepam and the naturally occurring purine nucleoside inosine, which competes for benzodiazepine receptor sites in the central nervous system. Application of inosine elicited two types of transmitter-like membrane effects: a rapidly desensitizing excitatory response and a nondesensitizing inhibitory response. Flurazepam produced a similar excitatory response which showed cross-desensitization with the purine excitation. Flurazepam also blocked the inhibitory inosine response. The results provide electrophysiological evidence that an endogenous purine can activate two different conductances on spinal neurons and that flurazepam can activate one of the conductances and antagonize the other.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉MacDonald, J F -- Barker, J L -- Paul, S M -- Marangos, P J -- Skolnick, P -- New York, N.Y. -- Science. 1979 Aug 17;205(4407):715-7.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/37602" target="_blank"〉PubMed〈/a〉
    Keywords: Animals ; Benzodiazepines/*metabolism ; Cells, Cultured ; Electric Conductivity ; Flurazepam/antagonists & inhibitors ; Inosine/*metabolism/pharmacology ; Ligands ; Mice ; Neurotransmitter Agents/metabolism ; Receptors, Drug/*metabolism ; Receptors, Neurotransmitter/metabolism ; Spinal Cord/*metabolism
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 2
    facet.materialart.
    Unknown
    American Association for the Advancement of Science (AAAS)
    Publication Date: 1978-11-24
    Description: Seizures induced in the rat by electroshock or by injections of pentylenetetrazol increase the specific binding of diazepam to putative receptor sites in cerebral cortical membranes. The enhancement of diazepam binding results from a rapid increase in the number of available binding sites rather than a change in receptor affinity. The postictal increase in cortical benzodiazepine receptors suggests that the cerebral cortex might be more sensitive to the anticonvulsant effects of the benzodiazepines after seizures. This observation may be related to the mechanism of action of these drugs in the treatment of recurrent seizures such as status epilepticus.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Paul, S M -- Skolnick, P -- New York, N.Y. -- Science. 1978 Nov 24;202(4370):892-4.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/715447" target="_blank"〉PubMed〈/a〉
    Keywords: Animals ; Anoxia/metabolism ; Binding Sites ; Brain/*metabolism ; Cerebral Cortex/metabolism ; Diazepam/*metabolism ; Electroshock ; Kinetics ; Male ; Pentylenetetrazole ; Rats ; Receptors, Drug/*metabolism ; Seizures/*metabolism ; Synaptosomes/metabolism
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...