ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    Publication Date: 1987-03-06
    Description: Vitamin D3 receptors are intracellular proteins that mediate the nuclear action of the active metabolite 1,25-dihydroxyvitamin D3 [1,25(OH)2D3]. Two receptor-specific monoclonal antibodies were used to recover the complementary DNA (cDNA) of this regulatory protein from a chicken intestinal lambda gt11 cDNA expression library. The amino acid sequences that were deduced from this cDNA revealed a highly conserved cysteine-rich region that displayed homology with a domain characteristic of other steroid receptors and with the gag-erbA oncogene product of avian erythroblastosis virus. RNA selected via hybridization with this DNA sequence directed the cell-free synthesis of immunoprecipitable vitamin D3 receptor. Northern blot analysis of polyadenylated RNA with these cDNA probes revealed two vitamin D receptor messenger RNAs (mRNAs) of 2.6 and 3.2 kilobases in receptor-containing chicken tissues and a major cross-hybridizing receptor mRNA species of 4.2 kilobases in mouse 3T6 fibroblasts. The 4.2-kilobase species was substantially increased by prior exposure of 3T6 cells to 1,25(OH)2D3. This cDNA represents perhaps the rarest mRNA cloned to date in eukaryotes, as well as the first receptor sequence described for an authentic vitamin.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉McDonnell, D P -- Mangelsdorf, D J -- Pike, J W -- Haussler, M R -- O'Malley, B W -- New York, N.Y. -- Science. 1987 Mar 6;235(4793):1214-7.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/3029866" target="_blank"〉PubMed〈/a〉
    Keywords: Amino Acid Sequence ; Animals ; Calcitriol/metabolism ; Chickens/*metabolism ; Cholecalciferol/*metabolism ; Cloning, Molecular ; DNA/*genetics ; Genetic Code ; Mice ; Molecular Conformation ; RNA, Messenger/metabolism ; Receptors, Steroid/*genetics/metabolism
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 2
    Publication Date: 1988-12-23
    Description: Hypocalcemic vitamin D-resistant rickets is a human genetic disease resulting from target organ resistance to the action of 1,25-dihydroxyvitamin D3. Two families with affected children homozygous for this autosomal recessive disorder were studied for abnormalities in the intracellular vitamin D receptor (VDR) and its gene. Although the receptor displays normal binding of 1,25-dihydroxyvitamin D3 hormone, VDR from affected family members has a decreased affinity for DNA. Genomic DNA isolated from these families was subjected to oligonucleotide-primed DNA amplification, and each of the nine exons encoding the receptor protein was sequenced for a genetic mutation. In each family, a different single nucleotide mutation was found in the DNA binding domain of the protein; one family near the tip of the first zinc finger (Gly----Asp) and one at the tip of the second zinc finger (Arg----Gly). The mutant residues were created in vitro by oligonucleotide directed point mutagenesis of wild-type VDR complementary DNA and this cDNA was transfected into COS-1 cells. The produced protein is biochemically indistinguishable from the receptor isolated from patients.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Hughes, M R -- Malloy, P J -- Kieback, D G -- Kesterson, R A -- Pike, J W -- Feldman, D -- O'Malley, B W -- New York, N.Y. -- Science. 1988 Dec 23;242(4886):1702-5.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Department of Cell Biology, Baylor College of Medicine, Houston, TX 77030.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/2849209" target="_blank"〉PubMed〈/a〉
    Keywords: Amino Acid Sequence ; Animals ; Binding Sites ; Calcitriol/metabolism ; Cell Line ; Cell Line, Transformed ; Codon ; DNA/genetics/metabolism ; Exons ; Female ; Gene Amplification ; Homozygote ; Humans ; Hypocalcemia/*genetics ; Immunoblotting ; Male ; Molecular Sequence Data ; *Mutation ; Receptors, Calcitriol ; Receptors, Steroid/*genetics/metabolism ; Rickets/*genetics ; Transfection
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 3
    Publication Date: 1988-07-01
    Description: High specific activity estradiol labeled with iodine-125 was used to detect approximately 200 saturable, high-affinity (dissociation constant approximately equal to 1.0 nM) nuclear binding sites in rat (ROS 17/2.8) and human (HOS TE85) clonal osteoblast-like osteosarcoma cells. Of the steroids tested, only testosterone exhibited significant cross-reactivity with estrogen binding. RNA blot analysis with a complementary DNA probe to the human estrogen receptor revealed putative receptor transcripts of 6 to 6.2 kilobases in both rat and human osteosarcoma cells. Type I procollagen and transforming growth factor-beta messenger RNA levels were enhanced in cultured human osteoblast-like cells treated with 1 nM estradiol. Thus, estrogen can act directly on osteoblasts by a receptor-mediated mechanism and thereby modulate the extracellular matrix and other proteins involved in the maintenance of skeletal mineralization and remodeling.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Komm, B S -- Terpening, C M -- Benz, D J -- Graeme, K A -- Gallegos, A -- Korc, M -- Greene, G L -- O'Malley, B W -- Haussler, M R -- New York, N.Y. -- Science. 1988 Jul 1;241(4861):81-4.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Department of Biochemistry, University of Arizona College of Medicine, Tucson 85724.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/3164526" target="_blank"〉PubMed〈/a〉
    Keywords: Animals ; Binding, Competitive ; Cell Nucleus/metabolism ; DNA/genetics ; Estradiol/*metabolism/pharmacology ; Humans ; Iodine Radioisotopes ; Nucleic Acid Hybridization ; Osteoblasts/drug effects/*metabolism ; Osteosarcoma/*metabolism ; Peptides/genetics ; Procollagen/genetics ; RNA, Messenger/*metabolism ; Rats ; Receptors, Estrogen/genetics/*metabolism ; Transcription, Genetic ; Transforming Growth Factors ; Tumor Cells, Cultured
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 4
    Publication Date: 1986-08-15
    Description: To define the functional domains of the progesterone receptor required for gene regulation, complementary DNA (cDNA) clones encoding the chicken progesterone receptor have been isolated from a chicken oviduct lambda gt11 cDNA expression library. Positive clones expressed antigenic determinants that cross-reacted with six monospecific antibodies derived from two independent sources. A 36-amino acid peptide sequence obtained by microsequencing of purified progesterone receptor was encoded by nucleotide sequences in the longest cDNA clone. Analysis of the amino acid sequence of the progesterone receptor deduced from the cDNA clones revealed a cysteine-rich region that was homologous to a region found in the estrogen and glucocorticoid receptors and to the avian erythroblastosis virus gag-erb-A fusion protein. Northern blot analysis with chicken progesterone receptor cDNA's indicated the existence of at least three messenger RNA species. These messages were found only in oviduct and could be induced by estrogens.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Conneely, O M -- Sullivan, W P -- Toft, D O -- Birnbaumer, M -- Cook, R G -- Maxwell, B L -- Zarucki-Schulz, T -- Greene, G L -- Schrader, W T -- O'Malley, B W -- New York, N.Y. -- Science. 1986 Aug 15;233(4765):767-70.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/2426779" target="_blank"〉PubMed〈/a〉
    Keywords: Amino Acid Sequence ; Animals ; Antibodies, Monoclonal ; Base Sequence ; Chickens ; *Cloning, Molecular ; Cross Reactions ; DNA/*metabolism ; Epitopes/analysis ; Female ; *Genes ; Humans ; Nucleic Acid Hybridization ; Oviducts/metabolism ; RNA, Messenger/genetics ; Receptors, Progesterone/*genetics ; Species Specificity
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 5
    Electronic Resource
    Electronic Resource
    s.l. : American Chemical Society
    Biochemistry 28 (1989), S. 7373-7379 
    ISSN: 1520-4995
    Source: ACS Legacy Archives
    Topics: Biology , Chemistry and Pharmacology
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 6
    Electronic Resource
    Electronic Resource
    s.l. : American Chemical Society
    Biochemistry 25 (1986), S. 6252-6258 
    ISSN: 1520-4995
    Source: ACS Legacy Archives
    Topics: Biology , Chemistry and Pharmacology
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...