ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
Filter
  • ASTROPHYSICS
  • Chemistry
  • SPACE VEHICLES
  • STRUCTURAL MECHANICS
  • American Association for the Advancement of Science (AAAS)  (9)
  • 1985-1989  (9)
  • 1970-1974
Collection
Publisher
  • American Association for the Advancement of Science (AAAS)  (9)
  • Wiley-Blackwell  (4,252)
Years
Year
  • 1
    facet.materialart.
    Unknown
    American Association for the Advancement of Science (AAAS)
    Publication Date: 1988-08-19
    Description: The question of how the primary amino acid sequence of a protein determines its three-dimensional structure is still unanswered. One approach to this problem involves the de novo design of model peptides and proteins that should adopt desired three-dimensional structures. A systematic approach was aimed at the design of a four-helix bundle protein. The gene encoding the designed protein was synthesized and the protein was expressed in Escherichia coli and purified to homogeneity. The protein was shown to be monomeric, highly helical, and very stable to denaturation by guanidine hydrochloride (GuHCl). Thus a globular protein has been designed that is capable of adopting a stable, folded structure in aqueous solution.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Regan, L -- DeGrado, W F -- New York, N.Y. -- Science. 1988 Aug 19;241(4868):976-8.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉E. I. du Pont de Nemours & Company, Central Research & Development Department, Wilmington, DE 19898.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/3043666" target="_blank"〉PubMed〈/a〉
    Keywords: Amino Acid Sequence ; Chemical Phenomena ; Chemistry ; Chromatography, Gel ; Escherichia coli/genetics ; Molecular Sequence Data ; Plasmids ; *Protein Conformation ; *Proteins/genetics
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 2
    facet.materialart.
    Unknown
    American Association for the Advancement of Science (AAAS)
    Publication Date: 1989-03-03
    Description: Monoclonal antibodies have been induced that are capable of catalyzing specific hydrolysis of the Gly-Phe bond of peptide substrates at neutral pH with a metal complex cofactor. The antibodies were produced by immunizing with a Co(III) triethylenetetramine (trien)-peptide hapten. These antibodies as a group are capable of binding trien complexes of not only Co(III) but also of numerous other metals. Six peptides were examined as possible substrates with the antibodies and various metal complexes. Two of these peptides were cleaved by several of the antibodies. One antibody was studied in detail, and cleavage was observed for the substrates with the trien complexes of Zn(II), Ga(III), Fe(III), In(III), Cu(II), Ni(II), Lu(III), Mg(II), or Mn(II) as cofactors. A turnover number of 6 x 10(-4) per second was observed for these substrates. These results demonstrate the feasibility of the use of cofactor-assisted catalysis in an antibody binding site to accomplish difficult chemical transformations.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Iverson, B L -- Lerner, R A -- New York, N.Y. -- Science. 1989 Mar 3;243(4895):1184-8.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Department of Molecular Biology, Research Institute of Scripps Clinic, La Jolla, CA 92037.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/2922606" target="_blank"〉PubMed〈/a〉
    Keywords: Amino Acid Sequence ; Animals ; *Antibodies, Monoclonal ; Antigens/immunology ; Binding Sites, Antibody ; Catalysis ; Chemical Phenomena ; Chemistry ; Cobalt/immunology/metabolism ; Glycine/metabolism ; Haptens/immunology ; Hydrogen-Ion Concentration ; Hydrolysis ; Immunization ; Metals/metabolism ; Mice ; Molecular Sequence Data ; Molecular Structure ; Oligopeptides/*metabolism ; Phenylalanine/metabolism ; Trientine/immunology
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 3
    Publication Date: 1987-08-14
    Description: Toxic chlorinated dibenzo-p-dioxins are known to be formed in incinerators that burn municipal refuse. These compounds were synthesized by surface-catalyzed reactions on fly ash particulates taken from incinerators. Dioxins were produced catalytically from chlorinated phenol precursors, from non-chlorinated compounds that were chemically dissimilar to dioxins, and from reaction of phenol with inorganic chlorides. The relative amounts of dioxins formed from [13C6]pentachlorophenol with different fly ashes that had been cleaned of all organic compounds corresponded well with those amounts originally found on the samples as received from the incinerators. The optimum temperature range for the formation of dioxins from pentachlorophenol was 250 degrees to 350 degrees C.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Karasek, F W -- Dickson, L C -- New York, N.Y. -- Science. 1987 Aug 14;237(4816):754-6.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/3616606" target="_blank"〉PubMed〈/a〉
    Keywords: Chemical Phenomena ; Chemistry ; Dioxins/*chemical synthesis ; Gas Chromatography-Mass Spectrometry ; *Hot Temperature ; Pentachlorophenol ; Polyvinyl Chloride ; *Refuse Disposal ; Tetrachlorodibenzodioxin/analogs & derivatives/*chemical synthesis
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 4
    Publication Date: 1987-03-06
    Description: Cross-polarization magic-angle-spinning nuclear magnetic resonance spectroscopy has been used to determine insect cuticle composition and cross-link structure during sclerotization or tanning. Unsclerotized cuticle from newly ecdysed pupae of the tobacco hornworm, Manduca sexta L., had a high protein content with lesser amounts of lipid and chitin. Concentrations of chitin, protein, and catechol increased substantially as dehydration and sclerotization progressed. Analysis of intact cuticle specifically labeled with carbon-13 and nitrogen-15 revealed direct covalent linkages between ring nitrogens of protein histidyl residues and ring carbons derived from the catecholamine dopamine. This carbon-nitrogen adduct was present in chitin isolated from cuticle by alkaline extraction and is probably bound covalently to chitin. These data support the hypothesis that the stiffening of insect cuticle during sclerotization results primarily from the deposition of protein and chitin polymers and their crosslinking by quinonoid derivatives of catecholamines.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Schaefer, J -- Kramer, K J -- Garbow, J R -- Jacob, G S -- Stejskal, E O -- Hopkins, T L -- Speirs, R D -- New York, N.Y. -- Science. 1987 Mar 6;235(4793):1200-4.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/3823880" target="_blank"〉PubMed〈/a〉
    Keywords: Animals ; Carbon Isotopes ; Chemical Phenomena ; Chemistry ; Cross-Linking Reagents/*metabolism ; Insects/*metabolism ; Magnetic Resonance Spectroscopy ; Nitrogen Isotopes ; Skin/*metabolism
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 5
    Publication Date: 1987-10-23
    Description: Monoclonal antibodies linked to toxic proteins (immunotoxins) can selectively kill some tumor cells in vitro and in vivo. However, reagents that combine the full potency of the native toxins with the high degree of cell type selectivity of monoclonal antibodies have not previously been designed. Two heretofore inseparable activities on one polypeptide chain of diphtheria toxin and ricin account for the failure to construct optimal reagents. The B chains (i) facilitate entry of the A chain to the cytosol, which allows immunotoxins to efficiently kill target cells, and (ii) bind to receptors present on most cells, which imparts to immunotoxins a large degree of non-target cell toxicity. This report identifies point mutations in the B polypeptide chain of diphtheria toxin that block binding but allow cytosol entry. Three mutants of diphtheria toxin have 1/1,000 to 1/10,000 the toxicity and 1/100 to 1/8,000 the binding activity of diphtheria toxin. Linking of either of two of the inactivated mutant toxins (CRM103, Phe508; CRM107, Phe390, Phe525) to a monoclonal antibody specific for human T cells reconstitutes full target-cell toxicity--indistinguishable from that of the native toxin linked to the same antibody--without restoring non-target cell toxicity. This separation of the entry function from the binding function generates a uniquely potent and cell type-specific immunotoxin that retains full diphtheria toxin toxicity, yet is four to five orders of magnitude less toxic than the native toxin is to nontarget cells.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Greenfield, L -- Johnson, V G -- Youle, R J -- New York, N.Y. -- Science. 1987 Oct 23;238(4826):536-9.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Department of Microbial Genetics, Cetus Corporation, Emeryville, CA 94608.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/3498987" target="_blank"〉PubMed〈/a〉
    Keywords: Animals ; Antibodies, Monoclonal ; Antigens, Differentiation, T-Lymphocyte/immunology ; Antigens, Surface/immunology ; Cell Line ; Cell Survival/drug effects ; Chemical Phenomena ; Chemistry ; Diphtheria Toxin/genetics/*metabolism/pharmacology ; Heparin-binding EGF-like Growth Factor ; Immunotoxins/*pharmacology ; Intercellular Signaling Peptides and Proteins ; *Mutation ; *Receptors, Cell Surface ; Receptors, Cholinergic/metabolism ; Ricin/metabolism ; Structure-Activity Relationship ; T-Lymphocytes/immunology ; Vero Cells
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 6
    Publication Date: 1987-03-06
    Description: A DNA cross-link adduct of the antitumor agent mitomycin C (MC) to DNA has been isolated and characterized; the results provide direct proof for bifunctional alkylation of DNA by MC. Exposure of MC to Micrococcus luteus DNA under reductive conditions and subsequent nuclease digestion yielded adducts formed between MC and deoxyguanosine residues. In addition to the two known monoadducts, a bisadduct was obtained. Reductive MC activation with Na2S2O4 (sodium dithionite) leads to exclusive bifunctional alkylation. The structure of the bisadduct was determined by spectroscopic methods that included proton magnetic resonance, differential Fourier transform infrared spectroscopy, and circular dichroism. Formation of the same bisadduct in vivo was demonstrated upon injection of rats with MC. Computer-generated models of the bisadduct that was incorporated into the center of the duplex B-DNA decamer d(CGTACGTACG)2 indicated that the bisadduct fit snugly into the minor groove with minimal distortion of DNA structure. A mechanistic analysis of the factors that govern monofunctional and bifunctional adduct formation is presented.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Tomasz, M -- Lipman, R -- Chowdary, D -- Pawlak, J -- Verdine, G L -- Nakanishi, K -- CA 11572/CA/NCI NIH HHS/ -- CA 28681/CA/NCI NIH HHS/ -- New York, N.Y. -- Science. 1987 Mar 6;235(4793):1204-8.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/3103215" target="_blank"〉PubMed〈/a〉
    Keywords: Chemical Phenomena ; Chemistry ; Cross-Linking Reagents/*isolation & purification ; DNA/*metabolism ; Mass Spectrometry ; Mitomycin ; Mitomycins/*metabolism ; Models, Molecular
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 7
    Publication Date: 1985-10-11
    Description: A new, competitive, nonpeptide cholecystokinin (CCK) antagonist, asperlicin, was isolated from the fungus Aspergillus alliaceus. The compound has 300 to 400 times the affinity for pancreatic, ileal, and gallbladder CCK receptors than proglumide, a standard agent of this class. Moreover, asperlicin is highly selective for peripheral CCK receptors relative to brain CCK and gastrin receptors. Since asperlicin also exhibits long-lasting CCK antagonist activity in vivo, it should provide a valuable tool for investigating the physiological and pharmacological actions of CCK.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Chang, R S -- Lotti, V J -- Monaghan, R L -- Birnbaum, J -- Stapley, E O -- Goetz, M A -- Albers-Schonberg, G -- Patchett, A A -- Liesch, J M -- Hensens, O D -- New York, N.Y. -- Science. 1985 Oct 11;230(4722):177-9.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/2994227" target="_blank"〉PubMed〈/a〉
    Keywords: Animals ; Aspergillus/*metabolism ; Benzodiazepinones/*isolation & purification/pharmacology ; Chemical Phenomena ; Chemistry ; Cholecystokinin/*antagonists & inhibitors/pharmacology/physiology ; Dose-Response Relationship, Drug ; Gallbladder/drug effects ; Guinea Pigs ; Ileum/drug effects ; Pancreas/drug effects ; Rats ; Receptors, Cell Surface/drug effects ; Receptors, Cholecystokinin
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 8
    facet.materialart.
    Unknown
    American Association for the Advancement of Science (AAAS)
    Publication Date: 1985-05-31
    Description: The herb Artemisia annua has been used for many centuries in Chinese traditional medicine as a treatment for fever and malaria. In 1971, Chinese chemists isolated from the leafy portions of the plant the substance responsible for its reputed medicinal action. This compound, called qinghaosu (QHS, artemisinin), is a sesquiterpene lactone that bears a peroxide grouping and, unlike most other antimalarials, lacks a nitrogen-containing heterocyclic ring system. The compound has been used successfully in several thousand malaria patients in China, including those with both chloroquine-sensitive and chloroquine-resistant strains of Plasmodium falciparum. Derivatives of QHS, such as dihydroqinghaosu, artemether, and the water-soluble sodium artesunate, appear to be more potent than QHS itself. Sodium artesunate acts rapidly in restoring to consciousness comatose patients with cerebral malaria. Thus QHS and its derivatives offer promise as a totally new class of antimalarials.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Klayman, D L -- New York, N.Y. -- Science. 1985 May 31;228(4703):1049-55.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/3887571" target="_blank"〉PubMed〈/a〉
    Keywords: Animals ; *Antimalarials ; *Artemisinins ; Brain Diseases/therapy ; Chemical Phenomena ; Chemistry ; Humans ; Liver/metabolism ; Malaria/*drug therapy ; Medicine, Chinese Traditional ; Metabolic Clearance Rate ; Plants, Medicinal/analysis ; Plasmodium berghei ; Plasmodium falciparum ; *Sesquiterpenes/isolation & purification/metabolism/therapeutic use/toxicity
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 9
    facet.materialart.
    Unknown
    American Association for the Advancement of Science (AAAS)
    Publication Date: 1985-02-22
    Description: A strategy for the synthesis of chiral molecules that receives growing popularity among organic chemists employs the photochemically mediated [2 + 2] cycloaddition reaction. These reactions can be performed on a multigram scale and often proceed with high yield and with stereocontrol. These features, in combination with the useful properties of the four-membered ring photoproducts in subsequent chemical transformations, make them attractive options in the early stage of a synthesis design. Various combinations of unsaturated functional groups can participate in this reaction process. Accordingly, these chemical reactions can be economical solutions to problems relating to the synthesis of a variety of target molecules.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Schreiber, S L -- GM-32527/GM/NIGMS NIH HHS/ -- New York, N.Y. -- Science. 1985 Feb 22;227(4689):857-63.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/4038558" target="_blank"〉PubMed〈/a〉
    Keywords: Animals ; Anti-Bacterial Agents/chemical synthesis ; Antifungal Agents/chemical synthesis ; Chemical Phenomena ; Chemistry ; Cockroaches ; Female ; Furans/chemical synthesis ; Lactones/chemical synthesis ; Male ; Mycotoxins/chemical synthesis ; *Photochemistry ; Pyrones/chemical synthesis ; Sex Attractants/chemical synthesis/isolation & purification ; Stereoisomerism
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...