ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
Filter
  • Articles  (455)
  • Molecular Sequence Data  (454)
  • Magnetism
  • 1990-1994  (455)
Collection
  • Articles  (455)
Years
Year
  • 1
    Publication Date: 1990-04-06
    Description: A complementary DNA (cDNA) clone that encodes inositol 1,4,5-trisphosphate 3-kinase was isolated from a rat brain cDNA expression library with the use of monoclonal antibodies. This clone had an open reading frame that would direct the synthesis of a protein consisting of 449 amino acids and with a molecular mass of 49,853 daltons. The putative protein revealed a potential calmodulin-binding site and six regions with amino acid compositions (PEST regions) common to proteins that are susceptible to calpain. Expression of the cDNA in COS cells resulted in an approximately 150-fold increase in inositol 1,4,5-trisphosphate 3-kinase activity of these cells.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Choi, K Y -- Kim, H K -- Lee, S Y -- Moon, K H -- Sim, S S -- Kim, J W -- Chung, H K -- Rhee, S G -- New York, N.Y. -- Science. 1990 Apr 6;248(4951):64-6.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Laboratory of Biochemistry, National Heart, Lung, and Blood Institute, National Institutes of Health, Bethesda, MD 20892.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/2157285" target="_blank"〉PubMed〈/a〉
    Keywords: Amino Acid Sequence ; Animals ; Binding Sites ; Brain/enzymology ; Calcium/metabolism ; Calmodulin/metabolism ; Calpain/antagonists & inhibitors/pharmacology ; Cell Line ; *Cloning, Molecular ; Codon ; DNA/*genetics ; *Gene Expression ; Molecular Sequence Data ; Molecular Weight ; Phosphotransferases/*genetics/metabolism ; *Phosphotransferases (Alcohol Group Acceptor) ; Plasmids ; Rats ; Transfection
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 2
    Publication Date: 1992-03-13
    Description: Oncostatin M, a cytokine produced by activated lymphoid cells, regulates the growth and differentiation of a number of tumor and normal cells. In contrast to its effects on normal endothelial and aortic smooth muscle cell cultures, Oncostatin M was a potent mitogen for cells derived from acquired immunodeficiency syndrome-related Kaposi's sarcoma (AIDS-KS). After exposure to Oncostatin M, AIDS-KS cells assumed a spindle morphology, had an increased ability to proliferate in soft agar, and secreted increased amounts of interleukin-6. Oncostatin M RNA and immunoreactive Oncostatin M protein were found in AIDS-KS-derived cell isolates. These results suggest that Oncostatin M may play a role in the pathogenesis of AIDS-KS.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Miles, S A -- Martinez-Maza, O -- Rezai, A -- Magpantay, L -- Kishimoto, T -- Nakamura, S -- Radka, S F -- Linsley, P S -- AI27660/AI/NIAID NIH HHS/ -- CA 01588/CA/NCI NIH HHS/ -- New York, N.Y. -- Science. 1992 Mar 13;255(5050):1432-4.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉UCLA AIDS Center 90024.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/1542793" target="_blank"〉PubMed〈/a〉
    Keywords: Acquired Immunodeficiency Syndrome/*complications ; Base Sequence ; Cell Division/drug effects ; Growth Substances/biosynthesis/*physiology ; Humans ; Molecular Sequence Data ; Neoplasm Proteins/biosynthesis ; Oncostatin M ; Peptide Biosynthesis ; Peptides/*physiology ; Recombinant Proteins/pharmacology ; Sarcoma, Kaposi/etiology/metabolism/*pathology ; Tumor Cells, Cultured
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 3
    Publication Date: 1993-10-15
    Description: The adhesive interactions between leukocyte L-selectin and the endothelium are involved in the migration of lymphocytes through peripheral lymph nodes and of neutrophils to sites of inflammation. A recombinant L-selectin stains high endothelial venules (HEVs) in lymph nodes and recognizes sulfated carbohydrates found on two endothelial glycoproteins, Sgp50 and Sgp90. Amino acid sequencing of purified Sgp90 revealed a protein core identical to that CD34, a sialomucin expressed on hematopoietic stem cells and endothelium. A polyclonal antiserum to recombinant murine CD34 stains peripheral lymph node endothelium and recognizes Sgp90 that is functionally bound by L-selectin. Thus, an HEV glycoform of CD34 can function as a ligand for L-selectin.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Baumheter, S -- Singer, M S -- Henzel, W -- Hemmerich, S -- Renz, M -- Rosen, S D -- Lasky, L A -- GM 23547/GM/NIGMS NIH HHS/ -- New York, N.Y. -- Science. 1993 Oct 15;262(5132):436-8.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Department of Immunology, Genentech, Inc., South San Francisco, CA 94080.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/7692600" target="_blank"〉PubMed〈/a〉
    Keywords: 3T3 Cells ; Amino Acid Sequence ; Animals ; Antigens, CD/*metabolism ; Antigens, CD34 ; Cell Adhesion Molecules/*metabolism ; Clusterin ; Endothelium, Vascular/*metabolism ; Glycoproteins/*metabolism ; L-Selectin ; Lymph Nodes/*blood supply ; Mice ; *Molecular Chaperones ; Molecular Sequence Data ; Mucins/*metabolism ; Recombinant Proteins/metabolism ; Sialomucins
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 4
    Publication Date: 1990-04-27
    Description: Affinity-purified, polyclonal antibodies to the gamma subunit of the dihydropyridine (DHP)-sensitive, voltage-dependent calcium channel have been used to isolate complementary DNAs to the rabbit skeletal muscle protein from an expression library. The deduced primary structure indicates that the gamma subunit is a 25,058-dalton protein that contains four transmembrane domains and two N-linked glycosylation sites, consistent with biochemical analyses showing that the gamma subunit is a glycosylated hydrophobic protein. Nucleic acid hybridization studies indicate that there is a 1200-nucleotide transcript in skeletal muscle but not in brain or heart. The gamma subunit may play a role in assembly, modulation, or the structure of the skeletal muscle calcium channel.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Jay, S D -- Ellis, S B -- McCue, A F -- Williams, M E -- Vedvick, T S -- Harpold, M M -- Campbell, K P -- HL-14388/HL/NHLBI NIH HHS/ -- HL-37187/HL/NHLBI NIH HHS/ -- HL-39265/HL/NHLBI NIH HHS/ -- New York, N.Y. -- Science. 1990 Apr 27;248(4954):490-2.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Howard Hughes Medical Institute, University of Iowa College of Medicine, Iowa City 52242.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/2158672" target="_blank"〉PubMed〈/a〉
    Keywords: Amino Acid Sequence ; Animals ; *Calcium Channels/drug effects/physiology ; DNA/isolation & purification ; Dihydropyridines/*pharmacology ; Disulfides ; Electrophoresis, Polyacrylamide Gel ; Immunoassay ; Macromolecular Substances ; Molecular Sequence Data ; Molecular Weight ; Muscles/*analysis ; Nucleic Acid Hybridization ; Protein Conformation ; RNA, Messenger/analysis ; Rabbits ; Sequence Homology, Nucleic Acid
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 5
    Publication Date: 1991-09-20
    Description: A human intestinal intraepithelial lymphocyte (IEL) T cell line was established from jejunum to characterize the structure and function of the alpha beta T cell antigen receptors (TCRs) expressed by this population. Single-sided polymerase chain reaction (PCR) amplification cloning and quantitative PCR amplification of the TCR chains from the cell line and from fresh IELs demonstrated that IELs were oligoclonal. The IEL T cell line exhibited CD1-specific cytotoxicity and a dominant IEL T cell clone was CD1c-specific. Thus, human jejunal intraepithelial lymphocytes are oligoclonal and recognize members of the CD1 gene family.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Balk, S P -- Ebert, E C -- Blumenthal, R L -- McDermott, F V -- Wucherpfennig, K W -- Landau, S B -- Blumberg, R S -- 5 KO8 DK01886/DK/NIDDK NIH HHS/ -- CA-01310/CA/NCI NIH HHS/ -- DK42166/DK/NIDDK NIH HHS/ -- New York, N.Y. -- Science. 1991 Sep 20;253(5026):1411-5.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Hematology-Oncology Division, Beth Israel Hospital, Harvard Medical School, Boston, MA 02215.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/1716785" target="_blank"〉PubMed〈/a〉
    Keywords: Amino Acid Sequence ; Antigens, CD/*genetics/immunology ; Antigens, CD1 ; Base Sequence ; Cell Line ; Clone Cells ; Epithelium/physiology ; Humans ; Jejunum/immunology ; Molecular Sequence Data ; Oligonucleotide Probes ; Polymerase Chain Reaction/methods ; Receptors, Antigen, T-Cell/*genetics ; T-Lymphocytes/*immunology
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 6
    Publication Date: 1992-07-17
    Description: N-type calcium channels are omega-conotoxin (omega-CgTx)-sensitive, voltage-dependent ion channels involved in the control of neurotransmitter release from neurons. Multiple subtypes of voltage-dependent calcium channel complexes exist, and it is the alpha 1 subunit of the complex that forms the pore through which calcium enters the cell. The primary structures of human neuronal calcium channel alpha 1B subunits were deduced by the characterization of overlapping complementary DNAs. Two forms (alpha 1B-1 and alpha 1B-2) were identified in human neuroblastoma (IMR32) cells and in the central nervous system, but not in skeletal muscle or aorta tissues. The alpha 1B-1 subunit directs the recombinant expression of N-type calcium channel activity when it is transiently co-expressed with human neuronal beta 2 and alpha 2b subunits in mammalian HEK293 cells. The recombinant channel was irreversibly blocked by omega-CgTx but was insensitive to dihydropyridines. The alpha 1B-1 alpha 2b beta 2-transfected cells displayed a single class of saturable, high-affinity (dissociation constant = 55 pM) omega-CgTx binding sites. Co-expression of the beta 2 subunit was necessary for N-type channel activity, whereas the alpha 2b subunit appeared to modulate the expression of the channel. The heterogeneity of alpha 1B subunits, along with the heterogeneity of alpha 2 and beta subunits, is consistent with multiple, biophysically distinct N-type calcium channels.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Williams, M E -- Brust, P F -- Feldman, D H -- Patthi, S -- Simerson, S -- Maroufi, A -- McCue, A F -- Velicelebi, G -- Ellis, S B -- Harpold, M M -- New York, N.Y. -- Science. 1992 Jul 17;257(5068):389-95.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉SIBIA, Inc., La Jolla, CA 92037.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/1321501" target="_blank"〉PubMed〈/a〉
    Keywords: Amino Acid Sequence ; Calcium/metabolism ; Calcium Channels/*drug effects/*genetics/*metabolism ; Cell Line ; Female ; Humans ; Male ; Membrane Potentials ; Molecular Sequence Data ; Neuroblastoma/metabolism ; Peptides, Cyclic/*pharmacology ; Sequence Alignment ; Sequence Homology, Nucleic Acid ; Transfection ; omega-Conotoxin GVIA
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 7
    Publication Date: 1991-12-20
    Description: Metal ion coordination in the regulatory domain of protein kinase C (PKC) is suggested by the conservation of six cysteines and two histidines in two homologous regions found therein. By monitoring x-ray fluorescence from a purified sample of rat PKC beta I overexpressed in insect cells, direct evidence has been obtained that PKC beta I tightly binds four zinc ions (Zn2+) per molecule. Extended x-ray absorption fine structure (EXAFS) data are best fit by an average Zn2+ coordination of one nitrogen and three sulfur atoms. Of the plausible Zn2+ coordination models, only those featuring nonbridged Zn2+ sites accommodate the EXAFS data and all of the conserved potential ligands.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Hubbard, S R -- Bishop, W R -- Kirschmeier, P -- George, S J -- Cramer, S P -- Hendrickson, W A -- New York, N.Y. -- Science. 1991 Dec 20;254(5039):1776-9.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Howard Hughes Medical Institute, New York, NY.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/1763327" target="_blank"〉PubMed〈/a〉
    Keywords: Absorptiometry, Photon/methods ; Amino Acid Sequence ; Animals ; Binding Sites ; Humans ; Macromolecular Substances ; Molecular Sequence Data ; Protein Conformation ; Protein Kinase C/chemistry/genetics/*metabolism ; Recombinant Proteins/chemistry/metabolism ; Sequence Homology, Nucleic Acid ; Zinc/*metabolism
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 8
    Publication Date: 1991-05-03
    Description: The molecular cloning of the complementary DNA coding for a 90-kilodalton fragment of tensin, an actin-binding component of focal contacts and other submembraneous cytoskeletal structures, is reported. The derived amino acid sequence revealed the presence of a Src homology 2 (SH2) domain. This domain is shared by a number of signal transduction proteins including nonreceptor tyrosine kinases such as Abl, Fps, Src, and Src family members, the transforming protein Crk, phospholipase C-gamma 1, PI-3 (phosphatidylinositol) kinase, and guanosine triphosphatase-activating protein (GAP). Like the SH2 domain found in Src, Crk, and Abl, the SH2 domain of tensin bound specifically to a number of phosphotyrosine-containing proteins from v-src-transformed cells. Tensin was also found to be phosphorylated on tyrosine residues. These findings suggest that by possessing both actin-binding and phosphotyrosine-binding activities and being itself a target for tyrosine kinases, tensin may link signal transduction pathways with the cytoskeleton.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Davis, S -- Lu, M L -- Lo, S H -- Lin, S -- Butler, J A -- Druker, B J -- Roberts, T M -- An, Q -- Chen, L B -- GM 22289/GM/NIGMS NIH HHS/ -- GM 38318/GM/NIGMS NIH HHS/ -- New York, N.Y. -- Science. 1991 May 3;252(5006):712-5.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Division of Cellular and Molecular Biology, Dana-Farber Cancer Institute, Harvard Medical School, Boston, MA 02115.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/1708917" target="_blank"〉PubMed〈/a〉
    Keywords: Actins/*metabolism ; Amino Acid Sequence ; Animals ; Binding Sites ; Chick Embryo ; Cloning, Molecular ; Cytoskeletal Proteins/*chemistry/genetics/metabolism ; DNA/genetics ; Fluorescent Antibody Technique ; Immunoblotting ; *Microfilament Proteins ; Molecular Sequence Data ; Peptide Fragments/genetics ; Phosphotyrosine ; Protein-Tyrosine Kinases/genetics ; Sequence Homology, Nucleic Acid ; Signal Transduction ; Tyrosine/analogs & derivatives/metabolism
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 9
    Publication Date: 1990-09-21
    Description: The primary structure of lipopolysaccharide binding protein (LBP), a trace plasma protein that binds to the lipid A moiety of bacterial lipopolysaccharides (LPSs), was deduced by sequencing cloned complementary DNA. LBP shares sequence identity with another LPS binding protein found in granulocytes, bactericidal/permeability-increasing protein, and with cholesterol ester transport protein of the plasma. LBP may control the response to LPS under physiologic conditions by forming high-affinity complexes with LPS that bind to monocytes and macrophages, which then secrete tumor necrosis factor. The identification of this pathway for LPS-induced monocyte stimulation may aid in the development of treatments for diseases in which Gram-negative sepsis or endotoxemia are involved.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Schumann, R R -- Leong, S R -- Flaggs, G W -- Gray, P W -- Wright, S D -- Mathison, J C -- Tobias, P S -- Ulevitch, R J -- AI 15136/AI/NIAID NIH HHS/ -- AI 25563/AI/NIAID NIH HHS/ -- GM 28485/GM/NIGMS NIH HHS/ -- New York, N.Y. -- Science. 1990 Sep 21;249(4975):1429-31.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Department of Immunology, Research Institute of Scripps Clinic, La Jolla, CA 92037.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/2402637" target="_blank"〉PubMed〈/a〉
    Keywords: *Acute-Phase Proteins ; Amino Acid Sequence ; Animals ; Base Sequence ; Blood Proteins/*genetics ; Carrier Proteins/*genetics/metabolism ; Gene Library ; Humans ; Kinetics ; Lipid A/metabolism ; Lipopolysaccharides/*metabolism/pharmacology ; Male ; *Membrane Glycoproteins ; Molecular Sequence Data ; Oligonucleotide Probes ; Rabbits ; Sequence Homology, Nucleic Acid ; Sheep ; Staphylococcus aureus ; Tumor Necrosis Factor-alpha/biosynthesis
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 10
    Publication Date: 1991-01-11
    Description: The amp operon, which is located on the Escherichia coli chromosome, modulates the induction of plasmid-borne beta-lactamase genes by extracellular beta-lactam antibiotics. This suggests that the gene products AmpD and AmpE may function in the transduction of external signals. beta-Lactam antibiotics are analogs of cell wall components that can be released during cell wall morphogenesis of enterobacteria. The amp operon was studied to determine its importance in signal transduction during cell wall morphogenesis. The peptidoglycan compositions of amp mutants were determined by high-performance liquid chromatography and fast atom bombardment mass spectrometry. When a chromosomal or plasmid-borne copy of ampD was present, the amount of pentapeptide-containing muropeptides in the cell wall increased upon addition of the cell wall constituent diaminopimelic acid to the growth medium. These results suggest that beta-lactamase induction and modulation of the composition of the cell wall share elements of a regulatory circuit that involves AmpD. Escherichia coli requires AmpD to respond to extracellular signaling amino acids, such as diaminopimelic acid, and this signal transduction system may regulate peptidoglycan composition in response to cell wall turnover products.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Tuomanen, E -- Lindquist, S -- Sande, S -- Galleni, M -- Light, K -- Gage, D -- Normark, S -- AI23459/AI/NIAID NIH HHS/ -- AI27913/AI/NIAID NIH HHS/ -- DRR00480/RR/NCRR NIH HHS/ -- New York, N.Y. -- Science. 1991 Jan 11;251(4990):201-4.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Laboratory of Microbiology, Rockefeller University, New York, NY 10021.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/1987637" target="_blank"〉PubMed〈/a〉
    Keywords: Amino Acid Sequence ; Bacterial Proteins/*genetics/metabolism ; Carboxypeptidases/metabolism ; Cell Wall/metabolism ; Diaminopimelic Acid/pharmacology ; Enzyme Induction ; Escherichia coli/*genetics/metabolism ; *Gene Expression Regulation/drug effects ; Genotype ; Membrane Proteins/*genetics/metabolism ; Molecular Sequence Data ; Mutation ; *N-Acetylmuramoyl-L-alanine Amidase ; Oligopeptides/metabolism ; *Operon ; Peptidoglycan/metabolism ; Plasmids ; Signal Transduction ; Spectrometry, Mass, Fast Atom Bombardment ; beta-Lactamases/*biosynthesis/genetics
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...