ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    Publication Date: 1990-08-31
    Description: The protein encoded by the wild-type p53 proto-oncogene has been shown to suppress transformation, whereas certain mutations that alter p53 become transformation competent. Fusion proteins between p53 and the GAL4 DNA binding domain were made to anchor p53 to a DNA target sequence and to allow measurement of transcriptional activation of a reporter plasmid. The wild-type p53 stimulated transcription in this assay, but two transforming mutations in p53 were unable to act as transcriptional activators. Therefore, p53 can activate transcription, and transformation-activating mutations result in a loss of function of the p53 protein. The inability of the p53 mutant proteins to activate transcription may enable them to be transformation competent.〈br /〉〈br /〉〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC2935288/" target="_blank"〉〈img src="https://static.pubmed.gov/portal/portal3rc.fcgi/4089621/img/3977009" border="0"〉〈/a〉   〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC2935288/" target="_blank"〉This paper as free author manuscript - peer-reviewed and accepted for publication〈/a〉〈br /〉〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Raycroft, L -- Wu, H Y -- Lozano, G -- CA16672/CA/NCI NIH HHS/ -- CA47296/CA/NCI NIH HHS/ -- R01 CA047296/CA/NCI NIH HHS/ -- R01 CA047296-12/CA/NCI NIH HHS/ -- New York, N.Y. -- Science. 1990 Aug 31;249(4972):1049-51.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉University of Texas, M. D. Anderson Cancer Center, Department of Molecular Genetics, Houston 77030.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/2144364" target="_blank"〉PubMed〈/a〉
    Keywords: Base Sequence ; *Cell Transformation, Neoplastic ; *Gene Expression Regulation ; HeLa Cells/metabolism ; Humans ; Molecular Sequence Data ; *Mutation ; Nuclear Proteins/genetics ; Oligonucleotide Probes ; Oncogene Proteins/*genetics ; Phosphoproteins/*genetics ; *Proto-Oncogenes ; RNA, Messenger/genetics ; Suppression, Genetic ; Transcription Factors/*genetics ; *Transcription, Genetic ; Tumor Suppressor Protein p53
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 2
    Publication Date: 1991-05-10
    Description: The Drosophila homeobox segmentation gene fushi tarazu (ftz) is expressed in a seven-stripe pattern during early embryogenesis. This characteristic pattern is largely specified by the zebra element located immediately upstream of the ftz transcriptional start site. The FTZ-F1 protein, one of multiple DNA binding factors that interacts with the zebra element, is implicated in the activation of ftz transcription, especially in stripes 1, 2, 3, and 6. An FTZ-F1 complementary DNA has been cloned by recognition site screening of a Drosophila expression library. The identity of the FTZ-F1 complementary DNA clone was confirmed by immunological cross-reaction with antibodies to FTZ-F1 and by sequence analysis of peptides from purified FTZ-F1 protein. The predicted amino acid sequence of FTZ-F1 revealed that the protein is a member of the nuclear hormone receptor superfamily. This finding raises the possibility that a hormonal ligand affects the expression of a homeobox segmentation gene early in embryonic development.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Lavorgna, G -- Ueda, H -- Clos, J -- Wu, C -- New York, N.Y. -- Science. 1991 May 10;252(5007):848-51.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Laboratory of Biochemistry, National Cancer Institute, National Institutes of Health, Bethesda, MD 20892.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/1709303" target="_blank"〉PubMed〈/a〉
    Keywords: Amino Acid Sequence ; Animals ; Base Sequence ; Blotting, Northern ; Blotting, Southern ; Blotting, Western ; Chromosome Mapping ; Cloning, Molecular ; Drosophila Proteins ; Drosophila melanogaster ; Fushi Tarazu Transcription Factors ; Gene Expression Regulation ; Genes, Homeobox ; *Homeodomain Proteins ; Insect Hormones/*chemistry ; Molecular Sequence Data ; Open Reading Frames ; RNA/analysis ; Receptors, Steroid/genetics ; Sequence Homology, Nucleic Acid ; Transcription, Genetic ; Zinc Fingers
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 3
    Publication Date: 1991-03-22
    Description: The three-dimensional atomic structure of a single-stranded DNA virus has been determined. Infectious virions of canine parvovirus contain 60 protein subunits that are predominantly VP-2. The central structural motif of VP-2 has the same topology (an eight-stranded antiparallel beta barrel) as has been found in many other icosahedral viruses but represents only about one-third of the capsid protein. There is a 22 angstrom (A) long protrusion on the threefold axes, a 15 A deep canyon circulating about each of the five cylindrical structures at the fivefold axes, and a 15 A deep depression at the twofold axes. By analogy with rhinoviruses, the canyon may be the site of receptor attachment. Residues related to the antigenic properties of the virus are found on the threefold protrusions. Some of the amino termini of VP-2 run to the exterior in full but not empty virions, which is consistent with the observation that some VP-2 polypeptides in full particles can be cleaved by trypsin. Eleven nucleotides are seen in each of 60 symmetry-related pockets on the interior surface of the capsid and together account for 13 percent of the genome.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Tsao, J -- Chapman, M S -- Agbandje, M -- Keller, W -- Smith, K -- Wu, H -- Luo, M -- Smith, T J -- Rossmann, M G -- Compans, R W -- New York, N.Y. -- Science. 1991 Mar 22;251(5000):1456-64.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Department of Biological Sciences, Purdue University, West Lafayette, IN 47907.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/2006420" target="_blank"〉PubMed〈/a〉
    Keywords: Amino Acid Sequence ; Antigens, Viral/chemistry ; Capsid/ultrastructure ; Crystallography ; DNA, Viral/ultrastructure ; Hemagglutinins, Viral/chemistry ; Models, Molecular ; Molecular Sequence Data ; Molecular Structure ; Parvoviridae/*ultrastructure ; Virion/ultrastructure ; Virus Replication ; X-Ray Diffraction
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 4
    Publication Date: 1991-06-21
    Description: Automated partial DNA sequencing was conducted on more than 600 randomly selected human brain complementary DNA (cDNA) clones to generate expressed sequence tags (ESTs). ESTs have applications in the discovery of new human genes, mapping of the human genome, and identification of coding regions in genomic sequences. Of the sequences generated, 337 represent new genes, including 48 with significant similarity to genes from other organisms, such as a yeast RNA polymerase II subunit; Drosophila kinesin, Notch, and Enhancer of split; and a murine tyrosine kinase receptor. Forty-six ESTs were mapped to chromosomes after amplification by the polymerase chain reaction. This fast approach to cDNA characterization will facilitate the tagging of most human genes in a few years at a fraction of the cost of complete genomic sequencing, provide new genetic markers, and serve as a resource in diverse biological research fields.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Adams, M D -- Kelley, J M -- Gocayne, J D -- Dubnick, M -- Polymeropoulos, M H -- Xiao, H -- Merril, C R -- Wu, A -- Olde, B -- Moreno, R F -- New York, N.Y. -- Science. 1991 Jun 21;252(5013):1651-6.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Section of Receptor Biochemistry and Molecular Biology, National Institute of Neurological Disorders and Stroke, National Institutes of Health, Bethesda, MD.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/2047873" target="_blank"〉PubMed〈/a〉
    Keywords: Amino Acid Sequence ; Automation ; *Base Sequence ; Brain/*physiology ; Chromosome Mapping ; DNA/*genetics ; Gene Expression ; *Gene Library ; *Human Genome Project ; Humans ; Molecular Sequence Data ; Multigene Family ; Polymerase Chain Reaction ; Sequence Homology, Nucleic Acid
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 5
    Publication Date: 1991-12-13
    Description: The cDNA for human gamma-glutamyl carboxylase, which accomplishes the post-translational modification required for the activity of all of the vitamin K-dependent proteins, was cloned. The enzyme is a 758-residue integral membrane protein and appears to have three transmembrane domains near its amino terminus. The hydrophilic COOH-terminal half of the carboxylase has 19.3 percent identity with soybean seed lipoxygenase. Expression of the cloned cDNA resulted in an increase in carboxylase activity in microsomes of transfected cells compared to mock-transfected cells.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Wu, S M -- Cheung, W F -- Frazier, D -- Stafford, D W -- New York, N.Y. -- Science. 1991 Dec 13;254(5038):1634-6.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Department of Biology, University of North Carolina, Chapel Hill 27599-3280.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/1749935" target="_blank"〉PubMed〈/a〉
    Keywords: Amino Acid Sequence ; Animals ; Base Sequence ; *Carbon-Carbon Ligases ; Cattle ; Cloning, Molecular ; DNA/genetics ; Humans ; Ligases/*genetics ; Molecular Sequence Data ; Oligodeoxyribonucleotides/chemistry ; Polymerase Chain Reaction ; Recombinant Proteins ; Sequence Alignment
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 6
    Publication Date: 1992-09-18
    Description: Most peptides do not enter the central nervous system because of their hydrophilic character and the presence of peptidolytic enzymes in the lipoidal blood-brain barrier. To achieve brain delivery of a peptide conjugate, an opioid peptide (enkephalin) was placed in a molecular environment that disguises its peptide nature and provides biolabile, lipophilic functions to penetrate the blood-brain barrier by passive transport. The strategy also incorporates a 1,4-dihydrotrigonellinate targetor that undergoes an enzymatically mediated oxidation to a hydrophilic, membrane-impermeable trigonellinate salt. The polar targetorpeptide conjugate that is trapped behind the lipoidal blood-brain barrier is deposited in the central nervous system. Analgesia was observed with "packaged" enkephalin but not with the unmodified peptide or lipophilic peptide precursors.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Bodor, N -- Prokai, L -- Wu, W M -- Farag, H -- Jonalagadda, S -- Kawamura, M -- Simpkins, J -- 1 PO AG10485/AG/NIA NIH HHS/ -- New York, N.Y. -- Science. 1992 Sep 18;257(5077):1698-700.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Center for Drug Discovery, College of Pharmacy, J. Hillis Miller Health Center, University of Florida, Gainesville 32610.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/1529356" target="_blank"〉PubMed〈/a〉
    Keywords: Amino Acid Sequence ; Aminopeptidases/metabolism ; Animals ; Blood-Brain Barrier/*physiology ; Brain/*metabolism ; Cholesterol Esters/administration & dosage/metabolism ; Enkephalin, Leucine-2-Alanine/administration & dosage/metabolism ; Lipid Metabolism ; Mass Spectrometry ; Molecular Sequence Data ; NADP/metabolism ; Peptides/*administration & dosage/chemistry/metabolism ; Prodrugs/*administration & dosage/metabolism ; Rats ; Rats, Inbred Strains ; Solubility
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 7
    Publication Date: 1993-11-12
    Description: Rice prolamines are sequestered within the endoplasmic reticulum (ER) lumen even though they lack a lumenal retention signal. Immunochemical and biochemical data show that BiP, a protein that binds lumenal polypeptides, is localized on the surface of the aggregated prolamine protein bodies (PBs). BiP also forms complexes with nascent chains of prolamines in polyribosomes and with free prolamines with distinct adenosine triphosphate sensitivities. Thus, BiP retains prolamines in the lumen by facilitating their folding and assembly into PBs.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Li, X -- Wu, Y -- Zhang, D Z -- Gillikin, J W -- Boston, R S -- Franceschi, V R -- Okita, T W -- New York, N.Y. -- Science. 1993 Nov 12;262(5136):1054-6.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Department of Genetics and Cell Biology, Washington State University, Pullman 99164.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/8235623" target="_blank"〉PubMed〈/a〉
    Keywords: Adenosine Triphosphate/pharmacology ; Amino Acid Sequence ; Endoplasmic Reticulum/metabolism ; Molecular Sequence Data ; Molecular Weight ; Oryza/*metabolism/ultrastructure ; Plant Proteins/chemistry/*metabolism ; Polyribosomes/metabolism ; Prolamins ; Protein Folding ; Puromycin/pharmacology
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 8
    Publication Date: 1993-11-26
    Description: The Pto gene in tomato confers resistance to races of Pseudomonas syringae pv. tomato that carry the avirulence gene avrPto. A yeast artificial chromosome clone that spans the Pto region was identified and used to probe a leaf complementary DNA (cDNA) library. A cDNA clone was isolated that represents a gene family, at least six members of which genetically cosegregate with Pto. When susceptible tomato plants were transformed with a cDNA from this family, they were resistant to the pathogen. Analysis of the amino acid sequence revealed similarity to serine-threonine protein kinases, suggesting a role for Pto in a signal transduction pathway.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Martin, G B -- Brommonschenkel, S H -- Chunwongse, J -- Frary, A -- Ganal, M W -- Spivey, R -- Wu, T -- Earle, E D -- Tanksley, S D -- New York, N.Y. -- Science. 1993 Nov 26;262(5138):1432-6.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Department of Plant Breeding and Biometry, Cornell University, Ithaca, NY 14853-1902.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/7902614" target="_blank"〉PubMed〈/a〉
    Keywords: Amino Acid Sequence ; Chromosomes, Artificial, Yeast ; *Cloning, Molecular ; DNA, Complementary/genetics ; *Genes, Plant ; Molecular Sequence Data ; *Multigene Family ; Plant Diseases/*genetics ; *Plant Proteins ; Polymorphism, Restriction Fragment Length ; Protein-Serine-Threonine Kinases/chemistry/*genetics/metabolism ; Pseudomonas/pathogenicity ; Signal Transduction ; Vegetables/enzymology/*genetics/microbiology ; Virulence
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 9
    Publication Date: 1993-01-08
    Description: The human and Drosophila heat shock transcription factors (HSFs) are multi-zipper proteins with high-affinity binding to DNA that is regulated by heat shock-induced trimerization. Formation of HSF trimers is dependent on hydrophobic heptad repeats located in the amino-terminal region of the protein. Two subregions at the carboxyl-terminal end of human HSF1 were identified that maintain the monomeric form of the protein under normal conditions. One of these contains a leucine zipper motif that is conserved between vertebrate and insect HSFs. These results suggest that the carboxyl-terminal zipper may suppress formation of trimers by the amino-terminal HSF zipper elements by means of intramolecular coiled-coil interactions that are sensitive to heat shock.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Rabindran, S K -- Haroun, R I -- Clos, J -- Wisniewski, J -- Wu, C -- New York, N.Y. -- Science. 1993 Jan 8;259(5092):230-4.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Laboratory of Biochemistry, National Cancer Institute, National Institutes of Health, Bethesda, MD 20892.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/8421783" target="_blank"〉PubMed〈/a〉
    Keywords: Amino Acid Sequence ; Animals ; Binding Sites ; Cell Line ; DNA/metabolism ; Drosophila/chemistry ; Heat-Shock Proteins/*chemistry/genetics/metabolism ; Hot Temperature ; Humans ; *Leucine Zippers ; Macromolecular Substances ; Molecular Sequence Data ; Mutagenesis ; Structure-Activity Relationship ; Transfection
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 10
    facet.materialart.
    Unknown
    American Association for the Advancement of Science (AAAS)
    Publication Date: 1994-08-05
    Description: The osmotic balance between the cytoplasmic and extracellular compartments of cells is critical for the control of cell volume. A mammalian protein kinase, Jnk, which is a distant relative of the mitogen-activated protein kinase group, was activated by phosphorylation on threonine and tyrosine in osmotically shocked cells. The activation of Jnk may be relevant to the biological response to osmotic shock because the expression of human Jnk in the yeast Saccharomyces cerevisiae rescued a defect in growth on hyper-osmolar media. These data indicate that related protein kinases may mediate osmosensing signal transduction in yeast and mammalian cells.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Galcheva-Gargova, Z -- Derijard, B -- Wu, I H -- Davis, R J -- New York, N.Y. -- Science. 1994 Aug 5;265(5173):806-8.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Department of Biochemistry and Molecular Biology, University of Massachusetts Medical School, Worcester 01605.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/8047888" target="_blank"〉PubMed〈/a〉
    Keywords: Amino Acid Sequence ; Animals ; CHO Cells ; Calcium-Calmodulin-Dependent Protein Kinases/genetics ; Cricetinae ; Cricetulus ; Enzyme Activation ; Genetic Complementation Test ; JNK Mitogen-Activated Protein Kinases ; *Mitogen-Activated Protein Kinases ; Molecular Sequence Data ; Osmotic Pressure ; Protein-Serine-Threonine Kinases/*physiology ; Saccharomyces cerevisiae/genetics ; *Saccharomyces cerevisiae Proteins ; Sequence Homology, Amino Acid ; Signal Transduction/*physiology ; Water-Electrolyte Balance/*physiology
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...