ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
Filter
  • Chemistry  (2)
  • vibrating wire  (1)
  • LUNAR AND PLANETARY EXPLORATION
  • polymer
  • 1990-1994  (3)
Collection
Keywords
Publisher
Years
Year
  • 1
    Electronic Resource
    Electronic Resource
    Springer
    International journal of thermophysics 12 (1991), S. 231-244 
    ISSN: 1572-9567
    Keywords: high pressure ; n-hexane ; vibrating wire ; viscosity
    Source: Springer Online Journal Archives 1860-2000
    Topics: Physics
    Notes: Abstract The design and operation of a new vibrating-wire viscometer for the measurement of the viscosity of liquids at pressures up to 100 MPa are described. The design of the instrument is based on a complete theory so that it is possible to make absolute measurements with an associated error of only a few parts in one thousand. Absolute measurements of the viscosity of n-hexane are reported at 298.15 K at pressures up to 80 MPa. The overall uncertainty in the reported viscosity data is estimated to be ±0.5%, an estimate confirmed by the comparison of values of viscosity of slightly inferior accuracy.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 2
    Electronic Resource
    Electronic Resource
    Stamford, Conn. [u.a.] : Wiley-Blackwell
    Polymer Engineering and Science 30 (1990), S. 175-186 
    ISSN: 0032-3888
    Keywords: Chemistry ; Chemical Engineering
    Source: Wiley InterScience Backfile Collection 1832-2000
    Topics: Chemistry and Pharmacology , Mechanical Engineering, Materials Science, Production Engineering, Mining and Metallurgy, Traffic Engineering, Precision Mechanics , Physics
    Notes: This paper describes the shear imposed interfacial segregation of release systems for the facilitated attenuation of polyurethane (PU) adhesion to metal coun-terfaces using a RI-RIM system. It is shown that the migration rate of the dispersed release additives due to a shear imposed stress in the resin fluid is much greater than that arising from Fickian diffusion, thereby removing a vital constraint from conventional practice. The novel rotary injection RIM system is presented to simulate the on-line injection and shear induced interfacial segregation in model PU/abherent systems. A wide range of recipes comprising single (liquids or solids) and multicomponent (liquid-liquid and solid-liquid) release materials were injected into the polymerizing resin mixture to provide cohesively weak and friable “particle” boundary layer assemblies at the PU/metal interface. An instrumented Blister Test was employed to evaluate the quality of the molded interfaces in terms of adhesion and the concentration distribution of the injected species in the final cured moldings was determined through high pressure liquid chromatography (HPLC). A comparison of the results on the shear modified and the compounded interfaces confirm an accentuated lateral migration of the additives to the interface resulting in an appreciable diminution in the adhesion of the system. Finally, transport models are suggested to account for the observed augmented transport.
    Additional Material: 12 Ill.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 3
    Electronic Resource
    Electronic Resource
    Stamford, Conn. [u.a.] : Wiley-Blackwell
    Polymer Engineering and Science 30 (1990), S. 162-174 
    ISSN: 0032-3888
    Keywords: Chemistry ; Chemical Engineering
    Source: Wiley InterScience Backfile Collection 1832-2000
    Topics: Chemistry and Pharmacology , Mechanical Engineering, Materials Science, Production Engineering, Mining and Metallurgy, Traffic Engineering, Precision Mechanics , Physics
    Notes: This paper describes the basic design features of a new reaction injection molding (RIM) processing device, Rotary Injection RIM (RI-RIM). The new design includes a novel mixing concept which furnishes high intermaterial contact area upon shear imposed rotary injection of the RIM components for effective in situ polymerization. This system operates in low pressure and laminar flow conditions, as opposed to the high pressure and turbulent flow, found in conventional RIM systems. The mixing process is described and quantified in terms of the various forces which govern the injection process. A progressive diminution in the average size of the dispersions generated is found with increasing rate of shear, continuous-phase viscosity, and injection rate. These results are compared with those expected from traditional shear mixing (bulk convective shearing) under comparable conditions and the current system found to be more efficacious. Reaction molding experiments with RI-RIM using a model polyurethane system are described and the influence of operating conditions on the mechanical properties of the finished moldings are elucidated. A detectable change in the morphology of the system is observed following increase in the total shear strain imparted to the initial mix of the multiphase reactants. It is suggested that the observed change is affected by a segregation between the components of the segmented polymer.
    Additional Material: 11 Ill.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...