ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    Publication Date: 1991-05-17
    Description: The aryl hydrocarbon (Ah) receptor binds various environmental pollutants, such as polycyclic aromatic hydrocarbons, heterocyclic amines, and polychlorinated aromatic compounds (dioxins, dibenzofurans, and biphenyls), and mediates the carcinogenic effects of these agents. The complementary DNA and part of the gene for an 87-kilodalton human protein that is necessary for Ah receptor function have been cloned. The protein is not the ligand-binding subunit of the receptor but is a factor that is required for the ligand-binding subunit to translocate from the cytosol to the nucleus after binding ligand. The requirement for this factor distinguishes the Ah receptor from the glucocorticoid receptor, to which the Ah receptor has been presumed to be similar. Two portions of the 87-kilodalton protein share sequence similarities with two Drosophila proteins, Per and Sim. Another segment of the protein shows conformity to the consensus sequence for the basic helix-loop-helix motif found in proteins that bind DNA as homodimers or heterodimers.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Hoffman, E C -- Reyes, H -- Chu, F F -- Sander, F -- Conley, L H -- Brooks, B A -- Hankinson, O -- CA 16048/CA/NCI NIH HHS/ -- CA 28868/CA/NCI NIH HHS/ -- New York, N.Y. -- Science. 1991 May 17;252(5008):954-8.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Department of Pathology, University of California, Los Angeles 90024.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/1852076" target="_blank"〉PubMed〈/a〉
    Keywords: Amino Acid Sequence ; Aryl Hydrocarbon Receptor Nuclear Translocator ; Base Sequence ; Cell Line ; Cell Nucleus/metabolism ; Cloning, Molecular ; Cytosol/metabolism ; *DNA-Binding Proteins ; Humans ; Macromolecular Substances ; Molecular Sequence Data ; Molecular Weight ; Oligonucleotide Probes ; Proteins/*genetics/metabolism ; RNA, Messenger/genetics ; Receptors, Aryl Hydrocarbon ; Receptors, Drug/genetics/*metabolism ; Sequence Homology, Nucleic Acid ; Tetrachlorodibenzodioxin/*metabolism ; *Transcription Factors ; Transfection
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 2
    Publication Date: 1992-05-22
    Description: The Ah (dioxin) receptor binds a number of widely disseminated environmental pollutants, including 2,3,7,8-tetrachlorodibenzo-p-dioxin (TCDD) and polycyclic aromatic hydrocarbons, and mediates their carcinogenic effects. The ligand-bound receptor activates Cyp 1a1 gene transcription through interaction with specific DNA sequences, termed xenobiotic responsive elements (XREs). The Ah receptor nuclear translocator protein (Arnt) is required for Ah receptor function. Arnt is now shown to be a structural component of the XRE binding form of the Ah receptor. Furthermore, Arnt and the ligand-binding subunit of the receptor were extracted as a complex from the nuclei of cells treated with ligand. Arnt contains a basic helix-loop-helix motif, which may be responsible for interacting with both the XRE and the ligand-binding subunit.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Reyes, H -- Reisz-Porszasz, S -- Hankinson, O -- CA 28868/CA/NCI NIH HHS/ -- New York, N.Y. -- Science. 1992 May 22;256(5060):1193-5.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Department of Pathology, University of California, Los Angeles 90024.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/1317062" target="_blank"〉PubMed〈/a〉
    Keywords: Animals ; Antibodies ; Aryl Hydrocarbon Receptor Nuclear Translocator ; Base Sequence ; Cell Line ; Cells, Cultured ; Cytochrome P-450 Enzyme System/genetics ; DNA/genetics/metabolism ; DNA-Binding Proteins/genetics/isolation & purification/*metabolism ; Humans ; Hydrocarbons/metabolism ; Mice ; Molecular Sequence Data ; Oligodeoxyribonucleotides ; Proteins/genetics/isolation & purification/*metabolism ; Receptors, Aryl Hydrocarbon ; Receptors, Drug/genetics/isolation & purification/*metabolism ; Recombinant Proteins/isolation & purification/metabolism ; Tetrachlorodibenzodioxin/metabolism ; *Transcription Factors ; Transcription, Genetic ; Transfection
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 3
    Publication Date: 1990-03-16
    Description: Major epidemic outbreaks of viral hepatitis in underdeveloped countries result from a type of non-A, non-B hepatitis distinct from the parenterally transmitted form. The viral agent responsible for this form of epidemic, or enterically transmitted non-A, non-B hepatitis (ET-NANBH), has been serially transmitted in cynomolgus macaques (cynos) and has resulted in typical elevation in liver enzymes and the detection of characteristic virus-like particles (VLPs) in both feces and bile. Infectious bile was used for the construction of recombinant complementary DNA libraries. One clone, ET1.1, was exogenous to uninfected human and cyno genomic liver DNA, as well as to genomic DNA from infected cyno liver. ET1.1 did however, hybridize to an approximately 7.6-kilobase RNA species present only in infected cyno liver. The translated nucleic acid sequence of a portion of ET1.1 had a consensus amino acid motif consistent with an RNA-directed RNA polymerase; this enzyme is present in all positive strand RNA viruses. Furthermore, ET1.1 specifically identified similar sequences in complementary DNA prepared from infected human fecal samples collected from five geographically distinct ET-NANBH outbreaks. Therefore, ET1.1 represents a portion of the genome of the principal viral agent, to be named hepatitis E virus, which is responsible for epidemic outbreaks of ET-NANBH.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Reyes, G R -- Purdy, M A -- Kim, J P -- Luk, K C -- Young, L M -- Fry, K E -- Bradley, D W -- New York, N.Y. -- Science. 1990 Mar 16;247(4948):1335-9.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Molecular Virology Department, Genelabs Incorporated, Redwood City, CA 94063.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/2107574" target="_blank"〉PubMed〈/a〉
    Keywords: Amino Acid Sequence ; Animals ; Base Sequence ; Cloning, Molecular ; DNA/genetics ; Hepatitis E/*microbiology ; Hepatitis Viruses/*genetics ; Hepatitis, Viral, Human/*microbiology ; Humans ; Macaca fascicularis ; Molecular Sequence Data ; Polymerase Chain Reaction ; RNA Viruses/genetics ; RNA, Viral/genetics ; Restriction Mapping
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...