ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
Filter
  • Aerodynamics  (1)
  • 1990-1994  (1)
Collection
Publisher
Years
Year
  • 1
    Electronic Resource
    Electronic Resource
    Chichester : Wiley-Blackwell
    International Journal for Numerical Methods in Fluids 15 (1992), S. 427-451 
    ISSN: 0271-2091
    Keywords: Aerodynamics ; Rotor ; Blade-vortex ; Interactions ; Engineering ; Engineering General
    Source: Wiley InterScience Backfile Collection 1832-2000
    Topics: Mechanical Engineering, Materials Science, Production Engineering, Mining and Metallurgy, Traffic Engineering, Precision Mechanics
    Notes: A finite-difference procedure has been developed for the prediction of three-dimensional rotor blade-vortex interactions. The interaction velocity field was obtained through a non-linear superposition of the rotor flow field, computed using the unsteady three-dimensional Euler equations, and the embedded vortex wake flow field, computed using the law of Biot-Savart. In the Euler model, near wake rotational effects were simulated using the surface velocity ‘transpiration’ approach. As a result, a modified surface boundary condition was prescribed and enforced at each time step of the computations to satisfy the tangency boundary condition. For supercritical interactions using an upstream-generated vortex, accuracy of the numerical results were found to rely on the user-specified vortex core radius and vortex strength. For the more general self-generated subcritical interactions, vortex wake trajectories were computed using the lifting-line helicopter/rotor trim code CAMRAD. For these interactions, accuracy of the results were found to rely heavily on the CAMRAD-predicted vortex strength, vortex orientation with respect to the blade, and to a large extent on the user-specified vortex core radius. Results for the one-seventh scale model OLS rotor and for a non-lifting rectangular blade having a NACA0012 section are presented. Comparisons with the experimental windtunnel data are also made.
    Additional Material: 10 Ill.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...