ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

feed icon rss

Ihre E-Mail wurde erfolgreich gesendet. Bitte prüfen Sie Ihren Maileingang.

Leider ist ein Fehler beim E-Mail-Versand aufgetreten. Bitte versuchen Sie es erneut.

Vorgang fortführen?

Exportieren
Filter
  • Weitere Quellen  (17)
  • AGU (American Geophysical Union)  (17)
  • Cell Press
  • Institute of Physics (IOP)
  • 1990-1994  (17)
  • 1
    Publikationsdatum: 2018-02-06
    Beschreibung: Digital hydrographic data combined with satellite thermal infrared and visible band remote sensing provide a synoptic climatological view of the shallow planktonic environment. This paper uses wind, hydrographic, and ocean remote sensing data to examine southwest monsoon controls on the foraminiferal faunal composition of Recent seafloor sediments of the northwestern Arabian Sea. Ekman pumping resulting in open-ocean upwelling and coastal upwelling create two distinctly different mixed layer plankton environments in the northwestern Arabian Sea during the summer monsoon. Open-sea upwelling to the northwest of the mean July position of the Findlater Jet axis yields a mixed layer environment with temperatures of less than 25°C to about 26.5°C, phytoplankton pigment concentrations between 1.5 and 5.0 mg/m³, and mixed layer depths less than 50 m. Convergence in the Ekman layer in the central Arabian Sea drives the formation of a mixed layer that is greater than 50 m thick, warmer than about 26.5°C, and has phytoplankton pigment concentrations generally below 2.0 mg/m³. Coastal upwelling creates an extremely eutrophic plankton environment that persists over and immediately adjacent to the Omani shelf and undergoes significant offshore transport only within topographically induced coastal squirts. The foraminiferal faunal composition of upper Pleistocene deep-sea sediments of the northwestern Arabian Sea are mainly controlled by vertical nutrient fluxes caused by Ekman pumping, not coastal upwelling. Transfer functions for late Pleistocene mixed layer depth, temperature, and chlorophyll have been obtained through factor analysis and nonlinear multiple regression between late summer mixed layer environment and Recent sediment faunal observations.
    Materialart: Article , PeerReviewed
    Format: text
    Standort Signatur Erwartet Verfügbarkeit
    BibTip Andere fanden auch interessant ...
  • 2
    facet.materialart.
    Unbekannt
    AGU (American Geophysical Union)
    In:  Paleoceanography, 6 (5). pp. 593-608.
    Publikationsdatum: 2016-06-16
    Beschreibung: Radiocarbon ages on CaCO3 from deep-sea cores offer constraints on the nature of the CaCO3 dissolution process. The idea is that the toll taken by dissolution on grains within the core top bioturbation zone should be in proportion to their time of residence in this zone. If so, dissolution would shift the mass distribution in favor of younger grains, thereby reducing the mean radiocarbon age for the grain ensemble. We have searched in vain for evidence supporting the existence of such an age reduction. Instead, we find that for water depths of more than 4 km in the tropical Pacific the radiocarbon age increases with the extent of dissolution. We can find no satisfactory steady state explanation and are forced to conclude that this increase must be the result of chemical erosion. The idea is that during the Holocene the rate of dissolution of CaCO3 has exceeded the rain rate of CaCO3. In this circumstance, bioturbation exhumes CaCO3 from the underlying glacial sediment and mixes it with CaCO3 raining from the sea surface.
    Materialart: Article , PeerReviewed
    Format: text
    Standort Signatur Erwartet Verfügbarkeit
    BibTip Andere fanden auch interessant ...
  • 3
    facet.materialart.
    Unbekannt
    AGU (American Geophysical Union)
    In:  Paleoceanography, 9 (6). pp. 879-892.
    Publikationsdatum: 2018-02-06
    Beschreibung: An abrupt lithofacies change between calcareous shale and noncalcareous shale occurs in strata deposited in the mid-Cretaceous Greenhorn Seaway in the southeastern corner of Montana. The facies were correlated lithostratigraphically using bentonites and calcarenites. The lithocorrelations were then refined using ammonites, foraminifera, and calcareous nannofossils. Twenty-five time slices were defined within the upper middle and lower upper Cenomanian strata. Biofacies analysis indicate that lithofacies changes record the boundary or oceanic front between two water masses with distinctly different paleoceanographic conditions. One water mass entered the seaway from the Arctic and the other from the Gulf of Mexico/Tethys. The microfauna and microflora permit interpretation of the environmental conditions in each water mass. At times when the front was near vertical, the two water masses were of the same density but of different temperatures and salinities.
    Materialart: Article , PeerReviewed
    Format: text
    Standort Signatur Erwartet Verfügbarkeit
    BibTip Andere fanden auch interessant ...
  • 4
    facet.materialart.
    Unbekannt
    AGU (American Geophysical Union)
    In:  Paleoceanography, 5 (4). pp. 469-477.
    Publikationsdatum: 2017-05-09
    Beschreibung: As shown by the work of Dansgaard and his colleagues, climate oscillations of one or so millennia duration punctuate much of glacial section of the Greenland ice cores. These oscillations are characterized by 5°C air temperature changes, severalfold dust content changes and 50 ppm CO2 changes. Both the temperature and CO2 change are best explained by changes in the mode of operation of the ocean. In this paper we provide evidence which suggests that oscillations in surface water conditions of similar duration are present in the record from a deep sea core at 50°N. Based on this finding, we suggest that the Greenland climate changes are driven by oscillations in the salinity of the Atlantic Ocean which modulate the strength of the Atlantic's conveyor circulation.
    Materialart: Article , PeerReviewed
    Format: text
    Standort Signatur Erwartet Verfügbarkeit
    BibTip Andere fanden auch interessant ...
  • 5
    facet.materialart.
    Unbekannt
    AGU (American Geophysical Union)
    In:  Journal of Geophysical Research - Oceans, 97 (C6). pp. 9455-9465.
    Publikationsdatum: 2018-02-06
    Beschreibung: This paper provides a detailed hydrographic climatology for the shallow northwestern Arabian Sea prior to and during the southwest monsoon, presented as multiple-year composite vertical hydrographic sections based on National Oceanographic Data Center historical ocean station data. Temperature and salinity measurements are used to infer the water masses present in the upper 500 m. The hydrographic evolution depicted on bimonthly sections is inferred to result from wind-driven physical processes. In the northwestern Arabian Sea the water mass in the upper 50 m is the Arabian Sea Surface Water. Waters from 50 to 500 m are formed by mixing of Arabian Sea Surface Water with Antarctic and Indonesian intermediate waters. The inflow of Persian Gulf Water does not significantly influence the hydrography of the northwestern Arabian Sea along the Omani coast. Nitrate has a high inverse correlation with temperature and oxygen in the premonsoon thermocline in the depth interval 50–150 m. During the southwest monsoon, coastal upwelling off Oman and adjacent offshore upward Ekman pumping alter the shallow hydrography.
    Materialart: Article , PeerReviewed
    Format: text
    Standort Signatur Erwartet Verfügbarkeit
    BibTip Andere fanden auch interessant ...
  • 6
    facet.materialart.
    Unbekannt
    AGU (American Geophysical Union)
    In:  Journal of Geophysical Research - Oceans, 96 (C11). pp. 20623-20642.
    Publikationsdatum: 2018-02-06
    Beschreibung: The biological variability of the northwestern Arabian Sea during the 1979 southwest monsoon has been investigated by the synthesis of satellite ocean color remote sensing with analysis of in situ hydrographic and meteorological data sets and the results of wind-driven modeling of upper ocean circulation. The phytoplankton bloom in the northwestern Arabian Sea peaked during August-September, extended from the Oman coast to about 65°E, and lagged the development of open-sea upwelling by at least 1 month. In total, the pigment distributions, hydrographic data, and model results all suggest that the bloom was driven by spatially distinct upward nutrient fluxes to the euphotic zone forced by the physical processes of coastal upwelling and offshore Ekman pumping. Coastal upwelling was evident from May through September, yielded the most extreme concentrations of phytoplankton biomass, and along the Arabian coast was limited to the continental shelf in the promotion of high concentrations of phytoplankton. Upward Ekman pumping to the northwest of the Somali Jet axis stimulated the development of a broad open-sea phytoplankton bloom oceanward of the Oman shelf. Vertical mixing during the 1979 southwest monsoon was apparently not a primary cause of the regional-scale phytoplankton bloom.
    Materialart: Article , PeerReviewed
    Format: text
    Standort Signatur Erwartet Verfügbarkeit
    BibTip Andere fanden auch interessant ...
  • 7
    facet.materialart.
    Unbekannt
    AGU (American Geophysical Union)
    In:  Reviews of Geophysics, 29 (3). p. 279.
    Publikationsdatum: 2019-01-23
    Beschreibung: At ocean margins where two plates converge, the oceanic plate sinks or is subducted beneath an upper one topped by a layer of terrestrial crust. This crust is constructed of continental or island arc material. The subduction process either builds juvenile masses of terrestrial crust through arc volcanism or new areas of crust through the piling up of accretionary masses (prisms) of sedimentary deposits and fragments of thicker crustal bodies scraped off the subducting lower plate. At convergent margins, terrestrial material can also bypass the accretionary prism as a result of sediment subduction, and terrestrial matter can be removed from the upper plate by processes of subduction erosion. Sediment subduction occurs where sediment remains attached to the subducting oceanic plate and underthrusts the seaward position of the upper plate's resistive buttress (backstop) of consolidated sediment and rock. Sediment subduction occurs at two types of convergent margins: type 1 margins where accretionary prisms form and type 2 margins where little net accretion takes place. At type 2 margins (∼19,000 km in global length), effectively all incoming sediment is subducted beneath the massif of basement or framework rocks forming the landward trench slope. At accreting or type 1 margins, sediment subduction begins at the seaward position of an active buttress of consolidated accretionary material that accumulated in front of a starting or core buttress of framework rocks. Where small-to-medium-sized prisms have formed (∼16,300 km), approximately 20% of the incoming sediment is skimmed off a detachment surface or decollement and frontally accreted to the active buttress. The remaining 80% subducts beneath the buttress and may either underplate older parts of the frontal body or bypass the prism entirely and underthrust the leading edge of the margin's rock framework. At margins bordered by large prisms (∼8,200 km), roughly 70% of the incoming trench floor section is subducted beneath the frontal accretionary body and its active buttress. In rounded figures the contemporary rate of solid-volume sediment subduction at convergent ocean margins (∼43,500 km) is calculated to be 1.5 km³/yr. Correcting type 1 margins for high rates of terrigenous seafloor sedimentation during the past 30 m.y. or so sets the long-term rate of sediment subduction at 1.0 km³/yr. The bulk of the subducted material is derived directly or indirectly from continental denudation. Interstitial water currently expulsed from accreted and deeply subducted sediment and recycled to the ocean basins is estimated at 0.9 km³/yr. The thinning and truncation caused by subduction erosion of the margin's framework rock and overlying sedimentary deposits have been demonstrated at many convergent margins but only off northern Japan, central Peru, and northern Chile has sufficient information been collected to determine average or long-term rates, which range from 25 to 50 km³/m.y. per kilometer of margin. A conservative long-term rate applicable to many sectors of convergent margins is 30 km³/km/m.y. If applied to the length of type 2 margins, subduction erosion removes and transports approximately 0.6 km³/yr of upper plate material to greater depths. At various places, subduction erosion also affects sectors of type 1 margins bordered by small- to medium-sized accretionary prisms (for example, Japan and Peru), thus increasing the global rate by possibly 0.5 km³/yr to a total of 1.1 km³/yr. Little information is available to assess subduction erosion at margins bordered by large accretionary prisms. Mass balance calculations allow assessments to be made of the amount of subducted sediment that bypasses the prism and underthrusts the margin's rock framework. This subcrustally subducted sediment is estimated at 0.7 km³/yr. Combined with the range of terrestrial matter removed from the margin's rock framework by subduction erosion, the global volume of subcrustally subducted material is estimated to range from 1.3 to 1.8 km³/yr. Subcrustally subducted material is either returned to the terrestrial crust by arc-related igneous processes or crustal underplating or is lost from the crust by mantle absorption. Geochemical and isotopic data support the notion that upper mantle melting returns only a small percent of the subducted material to the terrestrial crust as arc igneous rocks. Limited areal exposures of terrestrial rocks metamorphosed at deep (〉20–30 km) subcrustal pressures and temperatures imply that only a small fraction of subducted material is reattached via deep crustal underplating. Possibly, therefore much of the subducted terrestrial material is recycled to the mantle at a rate near 1.6 km³/yr, which is effectively equivalent to the commonly estimated rate at which the mantle adds juvenile igneous material to the Earth's layer of terrestrial rock.
    Materialart: Article , PeerReviewed
    Format: text
    Standort Signatur Erwartet Verfügbarkeit
    BibTip Andere fanden auch interessant ...
  • 8
    Publikationsdatum: 2017-01-18
    Beschreibung: Biogenic particle fluxes from highly productive surface waters, boundary scavenging, and hydrothermal activity are the main factors influencing the deposition of radionuclides in the area of the Galapagos microplate, eastern Equatorial Pacific. In order to evaluate the importance of these three processes throughout the last 100 kyr, concentrations of the radionuclides 10Be, 230Th, and 231Pa, and of Mn and Fe were measured at high resolution in sediment samples from two gravity cores KLH 068 and KLH 093. High biological productivity in the surface waters overlying the investigated area has led to 10Be and 231Pa fluxes exceeding production during at least the last 30 kyr and probably the last 100 kyr. However, during periods of high productivity at the up welling centers off Peru and extension of the equatorial high-productivity zone, a relative loss of 10Be and 231Pa may have occurred in these sediment cores because of boundary scavenging. The effects of hydrothermal activity were investigated by comparing the 230Thex concentrations to the Mn/Fe ratios and by comparing the fluxes of 230Th and 10Be which exceed production. The results suggest an enhanced hydrothermal influence during isotope stages 4 and 5 and to a lesser extent during isotope stage 1 in core KLH 093. During isotope stages 2 and 3, the hydrothermal supply of Mn was deposited elsewhere, probably because of changes in current regime or deep water oxygenation. A strong increase of the Mn/Fe ratio at the beginning of climatic stage 1 which is not accompanied by an increase of the 230Thex concentration is interpreted to be an effect of Mn remobilization and reprecipitation in the sediment.
    Materialart: Article , PeerReviewed
    Standort Signatur Erwartet Verfügbarkeit
    BibTip Andere fanden auch interessant ...
  • 9
    facet.materialart.
    Unbekannt
    AGU (American Geophysical Union)
    In:  Journal of Geophysical Research - Solid Earth, 96 (B4). pp. 5049-5066.
    Publikationsdatum: 2018-04-25
    Beschreibung: The present work deals with the petrography and geochemistry of lavas dredged from five active submarine volcanoes (named Mehetia, Moua Pihaa, Rocard, Teahitia, and Cyana) from the southeast end of the Society Islands hotspot trace. Most samples are basic and alkaline, ranging from 16 to 5 wt % MgO, with about 5% normative nepheline. Fractionation modelling based on major and minor compatible element variations suggests that olivine and minor clinopyroxene were the major fractionating phases and implies a maximum range of fractionation of 30–35%. Rocard and Cyana have yielded more evolved, trachy-phonolitic, glassy samples. These evolved samples are thought to be derived by removal of 70% cumulate from the basalts. Both basaltic and phonolitic samples are incompatible-element enriched, with La/YbN ≈ 15 in most of the basalts. The trachy-phonolite patterns show middle rare earth element (REE) depletion and negative Eu anomalies. The Moua Pihaa basalts have flatter patterns than the other basalts (La/YbN = 7.5–12.4). All samples, with the exception of a sample from Moua Pihaa which has elevated 206Pb/204Pb, fall on linear Sr-Nd-Pb isotopic arrays, suggesting two end-member mixing. The most depleted end-member is shown to be a pristine ocean island basalt magma with no detectable contribution from a depleted, mid-ocean ridge basalt (MORB) upper mantle. The flatter REE patterns and higher 206Pb/204Pb of the Moua Pihaa sample are taken to indicate a more depleted, U-enriched (high μ) component in its source. This component may be altered oceanic crust. The Sr isotopic variations in the samples excluding Moua Pihaa correlate positively with Rb/Nb, Pb/Ce, and SiO2 variations, indicating a component of mantle enriched by injection of material from a subducted oceanic slab. Correlation of 207Pb/204Pb with 87Sr/86Sr suggests that the subducted material is geochemically old. Mapping the geochemical variations shows that the contribution to the lavas from the subduction component is greater over the north of the hotspot than in the south. The absence of a MORB component in the Society magmatism, the small volumes of the Polynesian hotspot volcanoes, and the lack of more intense volcanic activity near the center of the Pacific Supers well, all lead us to conclude that the latter is unlikely to be caused by a large convective plume. The Superswell is more probably located above a region in the asthenospheric mantle which, due to its higher content of recycled continental debris, is anomalously hot.
    Materialart: Article , PeerReviewed
    Format: text
    Standort Signatur Erwartet Verfügbarkeit
    BibTip Andere fanden auch interessant ...
  • 10
    facet.materialart.
    Unbekannt
    AGU (American Geophysical Union)
    In:  Journal of Geophysical Research: Oceans, 99 (C10). pp. 20381-20391.
    Publikationsdatum: 2019-09-23
    Beschreibung: Sources of near-surface oceanic variability in the central North Atlantic are identified from a combined analysis of climatology, surface drifter, and Geosat altimeter data as well as eddy-resolving math formula and math formula Community Modeling Effort North Atlantic model results. Both observational and numerical methods give a consistent picture of the concentration of mesoscale variability along the mean zonal flow bands. Three areas of high eddy energy can be found in all observational data sets: the North Equatorial Current, the North Atlantic Current, and the Azores Current. With increasing horizontal resolution the numerical models give a more realistic representation of the variability in the first two regimes, while no improvement is found with respect to the Azores Current Frontal Zone. Examination of the upper ocean hydrographic structure indicates baroclinic instability to be the main mechanism of eddy generation and suggests that the model deficiencies in the Azores Current area are related to deficiencies in the mean hydrographic fields. A linear instability analysis of the numerical model output reveals that instability based on the velocity shear between the mixed layer and the interior is also important for the generation of the mid-ocean variability, indicating a potential role of the mixed layer representation for the model. The math formula model successfully simulates the northward decrease of eddy length scales observed in the altimeter data, which follow a linear relationship with the first baroclinic Rossby radius. An analysis of the eddy-mean flow interaction terms and the energy budget indicates a release of mean potential energy by downgradient fluxes of heat in the main frontal zones. At the same time the North Atlantic Current is found to be supported by convergent eddy fluxes of zonal momentum.
    Materialart: Article , PeerReviewed
    Format: text
    Standort Signatur Erwartet Verfügbarkeit
    BibTip Andere fanden auch interessant ...
Schließen ⊗
Diese Webseite nutzt Cookies und das Analyse-Tool Matomo. Weitere Informationen finden Sie hier...