ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
Filter
  • Articles  (5)
  • Other Sources
  • Convergence
  • 1990-1994  (2)
  • 1980-1984  (3)
  • Mathematics  (5)
  • Geography
  • 1
    Electronic Resource
    Electronic Resource
    Springer
    Mathematical programming 24 (1982), S. 284-313 
    ISSN: 1436-4646
    Keywords: Variational Inequality ; Complementarity ; Iterative Methods ; Convergence ; Traffic Equilibria
    Source: Springer Online Journal Archives 1860-2000
    Topics: Computer Science , Mathematics
    Notes: Abstract In this paper, we study both the local and global convergence of various iterative methods for solving the variational inequality and the nonlinear complementarity problems. Included among such methods are the Newton and several successive overrelaxation algorithms. For the most part, the study is concerned with the family of linear approximation methods. These are iterative methods in which a sequence of vectors is generated by solving certain linearized subproblems. Convergence to a solution of the given variational or complementarity problem is established by using three different yet related approaches. The paper also studies a special class of variational inequality problems arising from such applications as computing traffic and economic spatial equilibria. Finally, several convergence results are obtained for some nonlinear approximation methods.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 2
    Electronic Resource
    Electronic Resource
    Springer
    Constructive approximation 9 (1993), S. 41-58 
    ISSN: 1432-0940
    Keywords: Primary 41A55 ; 65D30 ; 65D32 ; Secondary 42C05 ; Integration rules ; Interpolatory integration rules ; Convergence ; Distribution of points ; Weak convergence ; Potential theory
    Source: Springer Online Journal Archives 1860-2000
    Topics: Mathematics
    Notes: Abstract Suppose that, forn≥1, $$I_n [f]: = \sum\limits_{j = 1}^n {w_{jn} f(x_{jn} )} $$ is aninterpolatory integration rule of numerical integration, that is, $$I_n [f]: = \int\limits_{ - 1}^1 {P(x)dx,} degree(P)〈 n.$$ Suppose, furthermore, that, for each continuousf:[−1, 1]→R, $$\mathop {\lim }\limits_{n \to \infty } I_n [f] = \int\limits_{ - 1}^1 {f(x)dx.} $$ What can then be said about thedistribution of the points $$\{ x_{jn} \} _{1 \leqslant j \leqslant n} $$ n→∞? In all the classical examples they havearcsin distribution. More precisely, if $$\mu _n : = \frac{1}{n}\sum\limits_{j = 1}^n {\delta _{x_{jn} } } $$ is the unit measure assigning mass 1/n to each pointx jn, then, asn→∞ $$d\mu _n (x)\mathop \to \limits^* \upsilon (x)dx: = \frac{1}{\pi }(\arcsin x)'dx = \frac{{dx}}{{\pi (1 - x^2 )^{1/2} }}.$$ Surprisingly enough, this isnot the general case. We show that the set of all possible limit distributions has the form 1/2(v(x) dx+dv(x)), wherev is an arbitrary probability measure on [−1, 1]. Moreover, given any suchv, we may find rulesI n,n≥1, with positive weights, yielding the limit distribution 1/2v(x) dx+dv(x)). We also consider generalizations when the quadratures have precision other thann−1, and when we place a weight σ in our integral.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 3
    Electronic Resource
    Electronic Resource
    Springer
    Constructive approximation 9 (1993), S. 59-82 
    ISSN: 1432-0940
    Keywords: Primary 41A55 ; 65D30 ; 65D32 ; Secondary 42C05 ; Integration rules on (−∞, ∞) ; Interpolatory integration rules ; Convergence ; Distribution of points ; Weak convergence ; Potential theory ; Gauss quadrature ; Nevai-Ullmann distribution
    Source: Springer Online Journal Archives 1860-2000
    Topics: Mathematics
    Notes: Abstract Letw be a “nice” positive weight function on (−∞, ∞), such asw(x)=exp(−⋎x⋎α) α〉1. Suppose that, forn≥1, $$I_n [f]: = \sum\limits_{j = 1}^n {w_{jn} } f(x_{jn} )$$ is aninterpolatory integration rule for the weightw: that is for polynomialsP of degree ≤n-1, $$I_n [P]: = \int\limits_{ - \infty }^\infty {P(x)w(x)dx.} $$ Moreover, suppose that the sequence of rules {I n} n=1 t8 isconvergent: $$\mathop {\lim }\limits_{n \to \infty } I_n [f] = \int\limits_{ - \infty }^\infty {f(x)w(x)dx} $$ for all continuousf:R→R satisfying suitable integrability conditions. What then can we say about thedistribution of the points {x jn} j=1 n ,n≥1? Roughly speaking, the conclusion of this paper is thathalf the points are distributed like zeros of orthogonal polynomials forw, and half may bearbitrarily distributed. Thus half the points haveNevai-Ullmann distribution of order α, and the rest are arbitrarily distributed. We also describe the possible distributions of the integration points, when the ruleI n has precision other thann-1.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 4
    Electronic Resource
    Electronic Resource
    Springer
    Journal of mathematical biology 13 (1982), S. 325-337 
    ISSN: 1432-1416
    Keywords: Population entropy ; Leslie model ; Markov chain ; Convergence ; Stable age distribution ; Ergodic theory
    Source: Springer Online Journal Archives 1860-2000
    Topics: Biology , Mathematics
    Notes: Summary The population entropy introduced by Demetrius is shown to have a precise dynamical meaning as a measure of convergence rate to the stable age distribution. First the Leslie population model is transformed exactly into a Markov chain on a state space of age-classes. Next the dynamics of convergence from a nonequilibrium state to the stable state are analyzed. The results provide the first clear biological reason why entropy is a broadly useful population statistic.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 5
    Electronic Resource
    Electronic Resource
    Springer
    Journal of mathematical biology 13 (1981), S. 241-246 
    ISSN: 1432-1416
    Keywords: Leslie matrix ; Index of primitivity ; Convergence ; Stable age distribution
    Source: Springer Online Journal Archives 1860-2000
    Topics: Biology , Mathematics
    Notes: Abstract An exact expression for the index of primitivity g of a Leslie matrix is obtained, which applies also to time-varying matrices which share an incidence matrix. Elapsed time (not time intervals) to primitivity is shown to depend only weakly on the discretization scheme used. A lower bound for speed of convergence to the stable (fixed or time-dependent as appropriate) state is given which depends sensitively on g.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...