ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
Filter
  • Numerical Methods and Modeling  (2)
  • finite elements  (1)
  • 1995-1999  (3)
  • 1
    Electronic Resource
    Electronic Resource
    Chichester : Wiley-Blackwell
    International Journal for Numerical Methods in Fluids 21 (1995), S. 981-991 
    ISSN: 0271-2091
    Keywords: finite elements ; compressible flow ; space-time formulation ; moving components ; Engineering ; Engineering General
    Source: Wiley InterScience Backfile Collection 1832-2000
    Topics: Mechanical Engineering, Materials Science, Production Engineering, Mining and Metallurgy, Traffic Engineering, Precision Mechanics
    Notes: A numerical simulation capability for the injector flow of a regenerative liquid propellant gun (RLPG) is presented. The problem involves fairly complex geometries and two pistons in relative motion; therefore a stabilized space-time finite element formulation developed earlier and capable of handling flows with moving mechanical components is used. In addition to the specifics of the numerical method, its application to a 30 mm RLPG test firing is discussed. The computational data from the simulation of this test case are interpreted to provide information on flow characteristics, with emphasis on the tendency of the flow to separate from the injection orifice boundary of the test problem. In addition, the computations provided insight into the behaviour of the flow entering the combustion chamber.
    Additional Material: 8 Ill.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 2
    Electronic Resource
    Electronic Resource
    Chichester : Wiley-Blackwell
    International Journal for Numerical Methods in Fluids 24 (1997), S. 1417-1432 
    ISSN: 0271-2091
    Keywords: parallel computing methods ; compressible flows ; missile aerodynamics ; Engineering ; Numerical Methods and Modeling
    Source: Wiley InterScience Backfile Collection 1832-2000
    Topics: Mechanical Engineering, Materials Science, Production Engineering, Mining and Metallurgy, Traffic Engineering, Precision Mechanics
    Notes: A flow simulation tool, developed by the authors at the Army HPC Research Center, for compressible flows governed by the Navier-Stokes equations is used to study missile aerodynamics at supersonic speeds, high angles of attack and for large Reynolds numbers. The goal of this study is the evaluation of this Navier-Stokes computational technique for the prediction of separated flow fields around high-length-to-diameter (L/D) bodies. In particular, this paper addresses two issues: (i) turbulence modelling with a finite element computational technique and (ii) efficient performance of the computational technique on two different multiprocessor mainframes, the Thinking Machines CM-5 and CRAY T3D. The paper first provides a discussion of the Navier-Stokes computational technique and the algorithm issues for achieving efficient performance on the CM-5 and T3D. Next, comparisons are shown between the computation and experiment for supersonic ramp flow to evaluate the suitability of the turbulence model. Following that, results of the computations for missile flow fields are shown for laminar and turbulent viscous effects. © 1997 John Wiley & Sons, Ltd.
    Additional Material: 13 Ill.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 3
    Electronic Resource
    Electronic Resource
    Chichester : Wiley-Blackwell
    International Journal for Numerical Methods in Fluids 24 (1997), S. 1433-1448 
    ISSN: 0271-2091
    Keywords: flow simulation ; moving mechanical components ; fluid-structure interactions ; two-fluid interfaces ; Engineering ; Numerical Methods and Modeling
    Source: Wiley InterScience Backfile Collection 1832-2000
    Topics: Mechanical Engineering, Materials Science, Production Engineering, Mining and Metallurgy, Traffic Engineering, Precision Mechanics
    Notes: The application of a stabilized space-time finite element formulation to problems involving fluid-structure interactions and two-fluid interfaces is discussed. Two sample problems are presented and the method is validated by comparison with a test problem. © 1997 John Wiley & Sons, Ltd.
    Additional Material: 10 Ill.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...