ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    Publication Date: 1999-09-25
    Description: Mass mortalities due to disease outbreaks have recently affected major taxa in the oceans. For closely monitored groups like corals and marine mammals, reports of the frequency of epidemics and the number of new diseases have increased recently. A dramatic global increase in the severity of coral bleaching in 1997-98 is coincident with high El Nino temperatures. Such climate-mediated, physiological stresses may compromise host resistance and increase frequency of opportunistic diseases. Where documented, new diseases typically have emerged through host or range shifts of known pathogens. Both climate and human activities may have also accelerated global transport of species, bringing together pathogens and previously unexposed host populations.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Harvell, C D -- Kim, K -- Burkholder, J M -- Colwell, R R -- Epstein, P R -- Grimes, D J -- Hofmann, E E -- Lipp, E K -- Osterhaus, A D -- Overstreet, R M -- Porter, J W -- Smith, G W -- Vasta, G R -- 1PO1 ES09563/ES/NIEHS NIH HHS/ -- New York, N.Y. -- Science. 1999 Sep 3;285(5433):1505-10.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Ecology and Evolutionary Biology, Cornell University, Ithaca, NY 14853, USA.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/10498537" target="_blank"〉PubMed〈/a〉
    Keywords: Animals ; Aquaculture ; *Climate ; Cnidaria ; *Disease Outbreaks/*veterinary ; Humans ; Infection/epidemiology/*etiology/transmission/*veterinary ; *Marine Biology ; Oceans and Seas ; Water Pollution
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 2
    Publication Date: 1999-07-31
    Description: Apoptosis is implicated in the generation and resolution of inflammation in response to bacterial pathogens. All bacterial pathogens produce lipoproteins (BLPs), which trigger the innate immune response. BLPs were found to induce apoptosis in THP-1 monocytic cells through human Toll-like receptor-2 (hTLR2). BLPs also initiated apoptosis in an epithelial cell line transfected with hTLR2. In addition, BLPs stimulated nuclear factor-kappaB, a transcriptional activator of multiple host defense genes, and activated the respiratory burst through hTLR2. Thus, hTLR2 is a molecular link between microbial products, apoptosis, and host defense mechanisms.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Aliprantis, A O -- Yang, R B -- Mark, M R -- Suggett, S -- Devaux, B -- Radolf, J D -- Klimpel, G R -- Godowski, P -- Zychlinsky, A -- AI 37720-04/AI/NIAID NIH HHS/ -- AI-38894/AI/NIAID NIH HHS/ -- New York, N.Y. -- Science. 1999 Jul 30;285(5428):736-9.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Skirball Institute and Department of Microbiology, New York University School of Medicine, 540 First Avenue, New York, NY 10016, USA.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/10426996" target="_blank"〉PubMed〈/a〉
    Keywords: Antibodies, Monoclonal ; Antigens, CD14/analysis ; *Apoptosis ; Bacterial Proteins/metabolism/*pharmacology ; Cell Line/metabolism ; Cycloheximide/pharmacology ; Cytotoxicity, Immunologic ; *Drosophila Proteins ; Genes, Reporter ; Humans ; Lipopolysaccharides/immunology ; Lipoproteins/metabolism/*pharmacology ; Membrane Glycoproteins/immunology/*metabolism ; Monocytes/*cytology/immunology/metabolism ; NF-kappa B/metabolism ; Protein Synthesis Inhibitors/pharmacology ; Reactive Oxygen Species/metabolism ; Receptors, Cell Surface/immunology/*metabolism ; Signal Transduction ; Tetradecanoylphorbol Acetate/pharmacology ; Toll-Like Receptor 2 ; Toll-Like Receptors ; Transfection ; Tumor Cells, Cultured
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 3
    Publication Date: 1997-03-28
    Description: The transcription factor NF-AT responds to Ca2+-calcineurin signals by translocating to the nucleus, where it participates in the activation of early immune response genes. Calcineurin dephosphorylates conserved serine residues in the amino terminus of NF-AT, resulting in nuclear import. Purification of the NF-AT kinase revealed that it is composed of a priming kinase activity and glycogen synthase kinase-3 (GSK-3). GSK-3 phosphorylates conserved serines necessary for nuclear export, promotes nuclear exit, and thereby opposes Ca2+-calcineurin signaling. Because GSK-3 responds to signals initiated by Wnt and other ligands, NF-AT family members could be effectors of these pathways.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Beals, C R -- Sheridan, C M -- Turck, C W -- Gardner, P -- Crabtree, G R -- New York, N.Y. -- Science. 1997 Mar 28;275(5308):1930-4.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Howard Hughes Medical Institute, Department of Developmental Biology, Stanford University, Stanford, CA 94305, USA.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/9072970" target="_blank"〉PubMed〈/a〉
    Keywords: Amino Acid Sequence ; Animals ; Biological Transport ; Brain/enzymology ; COS Cells ; Calcineurin ; Calcium/metabolism ; Calcium-Calmodulin-Dependent Protein Kinases/*metabolism ; Calmodulin-Binding Proteins/metabolism ; Cell Nucleus/*metabolism ; Cloning, Molecular ; Cyclic AMP-Dependent Protein Kinases/metabolism ; DNA-Binding Proteins/genetics/*metabolism ; Glycogen Synthase Kinase 3 ; Glycogen Synthase Kinases ; Humans ; Molecular Sequence Data ; NFATC Transcription Factors ; *Nuclear Proteins ; Phosphoprotein Phosphatases/metabolism ; Phosphorylation ; Rats ; Recombinant Fusion Proteins/metabolism ; Signal Transduction ; Transcription Factors/genetics/*metabolism ; Transfection
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 4
    Publication Date: 1997-12-31
    Description: Signal transducers and activators of transcription (STATs) enhance transcription of specific genes in response to cytokines and growth factors. STAT1 is also required for efficient constitutive expression of the caspases Ice, Cpp32, and Ich-1 in human fibroblasts. As a consequence, STAT1-null cells are resistant to apoptosis by tumor necrosis factor alpha (TNF-alpha). Reintroduction of STAT1alpha restored both TNF-alpha-induced apoptosis and the expression of Ice, Cpp32, and Ich-1. Variant STAT1 proteins carrying point mutations that inactivate domains required for STAT dimer formation nevertheless restored protease expression and sensitivity to apoptosis, indicating that the functions of STAT1 required for these activities are different from those that mediate induced gene expression.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Kumar, A -- Commane, M -- Flickinger, T W -- Horvath, C M -- Stark, G R -- P01 CA62220/CA/NCI NIH HHS/ -- New York, N.Y. -- Science. 1997 Nov 28;278(5343):1630-2.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Department of Molecular Biology, Lerner Research Institute, The Cleveland Clinic Foundation, Cleveland, OH 44195, USA.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/9374464" target="_blank"〉PubMed〈/a〉
    Keywords: *Apoptosis ; Caspase 1 ; Caspase 2 ; Caspase 3 ; *Caspases ; Cell Line ; Cysteine Endopeptidases/genetics/*metabolism ; DNA-Binding Proteins/chemistry/genetics/*metabolism ; Dactinomycin/pharmacology ; Dimerization ; Gene Expression Regulation, Enzymologic ; Humans ; Interferon-gamma/pharmacology ; Phosphorylation ; Point Mutation ; Proteins/genetics/*metabolism ; STAT1 Transcription Factor ; Signal Transduction ; Trans-Activators/chemistry/genetics/*metabolism ; Transfection ; Tumor Necrosis Factor-alpha/*pharmacology
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 5
    facet.materialart.
    Unknown
    American Association for the Advancement of Science (AAAS)
    Publication Date: 1997-07-11
    Description: 〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Graef, I A -- Crabtree, G R -- New York, N.Y. -- Science. 1997 Jul 11;277(5323):193-4.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Department of Developmental Biology, Stanford Medical School, Stanford, CA 94305, USA.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/9235633" target="_blank"〉PubMed〈/a〉
    Keywords: Animals ; B-Lymphocytes/*metabolism ; DNA-Binding Proteins/*metabolism ; Homeodomain Proteins/*metabolism ; Host Cell Factor C1 ; Interleukin-2/genetics ; Lymphocyte Activation ; Mice ; Octamer Transcription Factor-1 ; Octamer Transcription Factor-2 ; Signal Transduction ; T-Lymphocytes/*metabolism ; Trans-Activators/*metabolism ; Transcription Factors/*metabolism ; *Transcription, Genetic
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 6
    facet.materialart.
    Unknown
    American Association for the Advancement of Science (AAAS)
    Publication Date: 1997-02-28
    Description: In yeast, an overlapping set of mitogen-activated protein kinase (MAPK) signaling components controls mating, haploid invasion, and pseudohyphal development. Paradoxically, a single downstream transcription factor, Ste12, is necessary for the execution of these distinct programs. Developmental specificity was found to require a transcription factor of the TEA/ATTS family, Tec1, which cooperates with Ste12 during filamentous and invasive growth. Purified derivatives of Ste12 and Tec1 bind cooperatively to enhancer elements called filamentation and invasion response elements (FREs), which program transcription that is specifically responsive to the MAPK signaling components required for filamentous growth. An FRE in the TEC1 promoter functions in a positive feedback loop required for pseudohyphal development.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Madhani, H D -- Fink, G R -- New York, N.Y. -- Science. 1997 Feb 28;275(5304):1314-7.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Whitehead Institute for Biomedical Research, 9 Cambridge Center, Cambridge, MA 02142, USA.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/9036858" target="_blank"〉PubMed〈/a〉
    Keywords: Calcium-Calmodulin-Dependent Protein Kinases/*metabolism ; DNA-Binding Proteins/genetics/*metabolism ; *Enhancer Elements, Genetic ; Fungal Proteins/*metabolism ; Intracellular Signaling Peptides and Proteins ; MAP Kinase Kinase Kinases/metabolism ; Mitogen-Activated Protein Kinase Kinases ; Mutation ; Protein Kinases/metabolism ; Protein-Serine-Threonine Kinases/metabolism ; Retroelements ; Saccharomyces cerevisiae/genetics/growth & development/*metabolism ; *Saccharomyces cerevisiae Proteins ; *Schizosaccharomyces pombe Proteins ; Signal Transduction ; *Transcription Factors ; Transcription, Genetic
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 7
    facet.materialart.
    Unknown
    American Association for the Advancement of Science (AAAS)
    Publication Date: 1996-03-01
    Description: 〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Fink, G R -- New York, N.Y. -- Science. 1996 Mar 1;271(5253):1213.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/8638092" target="_blank"〉PubMed〈/a〉
    Keywords: *Administrative Personnel ; DNA, Recombinant ; Government Agencies/*organization & administration ; *Hepatitis B Vaccines ; Humans ; National Institutes of Health (U.S.) ; Research Support as Topic ; Saccharomyces cerevisiae/*genetics ; *Transformation, Genetic ; United States ; Vaccines, Synthetic
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 8
    Publication Date: 1995-04-07
    Description: Shock due to Gram-negative bacterial sepsis is a consequence of acute inflammatory response to lipopolysaccharide (LPS) or endotoxin released from bacteria. LPS is a major constituent of the outer membrane of Gram-negative bacteria, and its terminal disaccharide phospholipid (lipid A) portion contains the key structural features responsible for toxic activity. Based on the proposed structure of nontoxic Rhodobacter capsulatus lipid A, a fully stabilized endotoxin antagonist E5531 has been synthesized. In vitro, E5531 demonstrated potent antagonism of LPS-mediated cellular activation in a variety of systems. In vivo, E5531 protected mice from LPS-induced lethality and, in cooperation with an antibiotic, protected mice from a lethal infection of viable Escherichia coli.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Christ, W J -- Asano, O -- Robidoux, A L -- Perez, M -- Wang, Y -- Dubuc, G R -- Gavin, W E -- Hawkins, L D -- McGuinness, P D -- Mullarkey, M A -- New York, N.Y. -- Science. 1995 Apr 7;268(5207):80-3.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Elsai Research Institute, Andover, MA 01810-2441, USA.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/7701344" target="_blank"〉PubMed〈/a〉
    Keywords: Animals ; BCG Vaccine/immunology ; Cytokines/secretion ; Drug Design ; Endotoxins/*antagonists & inhibitors ; Escherichia coli Infections/immunology ; Gram-Negative Bacteria/immunology ; Humans ; In Vitro Techniques ; Lipid A/*analogs & derivatives/chemical synthesis/chemistry/pharmacology ; Lipopolysaccharides/antagonists & inhibitors ; Macrophages/immunology ; Male ; Mice ; Mice, Inbred C57BL ; Monocytes/immunology ; Moxalactam/pharmacology ; Nitric Oxide/metabolism ; Rhodobacter capsulatus/immunology ; Tumor Necrosis Factor-alpha/secretion
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 9
    facet.materialart.
    Unknown
    American Association for the Advancement of Science (AAAS)
    Publication Date: 1996-08-09
    Description: 〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Leung, S -- Li, X -- Stark, G R -- New York, N.Y. -- Science. 1996 Aug 9;273(5276):750-1.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Department of Molecular Biology, Research Institute, Cleveland Clinic Foundation, Cleveland, OH 44195, USA.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/8701326" target="_blank"〉PubMed〈/a〉
    Keywords: Animals ; Antigens, CD/metabolism ; Cytokines/*metabolism ; DNA-Binding Proteins/chemistry/metabolism ; Humans ; Interferon-alpha/metabolism ; Interferon-gamma/metabolism ; Phosphorylation ; Receptor, Interferon alpha-beta ; Receptors, Interferon/metabolism ; STAT1 Transcription Factor ; STAT4 Transcription Factor ; *Signal Transduction ; Trans-Activators/chemistry/*metabolism ; Transcription Factors/metabolism ; *Transcriptional Activation ; src Homology Domains
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 10
    Publication Date: 1995-03-03
    Description: In response to specific ligands, various STAT proteins (signal transducers and activators of transcription) are phosphorylated on tyrosine by Jak protein kinases and translocated to the nucleus to direct gene transcription. Selection of a STAT at the interferon gamma receptor as well as specific STAT dimer formation depended on the presence of particular SH2 groups (phosphotyrosine-binding domains), whereas the amino acid sequence surrounding the phosphorylated tyrosine on the STAT could vary. Thus, SH2 groups in STAT proteins may play crucial roles in specificity at the receptor kinase complex and in subsequent dimerization, whereas the kinases are relatively nonspecific.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Heim, M H -- Kerr, I M -- Stark, G R -- Darnell, J E Jr -- AI32489/AI/NIAID NIH HHS/ -- AI34420/AI/NIAID NIH HHS/ -- New York, N.Y. -- Science. 1995 Mar 3;267(5202):1347-9.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Laboratory of Molecular Cell Biology, Rockefeller University, New York, NY 10021.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/7871432" target="_blank"〉PubMed〈/a〉
    Keywords: Animals ; Cell Line ; DNA-Binding Proteins/chemistry/*metabolism ; Interferon-alpha/*pharmacology ; Interferon-gamma/*pharmacology ; Janus Kinase 1 ; Janus Kinase 2 ; Phosphorylation ; Protein-Tyrosine Kinases/*metabolism ; Proteins/metabolism ; *Proto-Oncogene Proteins ; Receptors, Interferon/metabolism ; Recombinant Fusion Proteins/metabolism ; STAT1 Transcription Factor ; Signal Transduction ; Trans-Activators/chemistry/*metabolism ; Tyrosine/metabolism
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...