ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    Electronic Resource
    Electronic Resource
    Chichester [u.a.] : Wiley-Blackwell
    International Journal for Numerical Methods in Engineering 39 (1996), S. 1635-1657 
    ISSN: 0029-5981
    Keywords: finite element method ; radiation boundary conditions ; absorbing boundary conditions ; discontinuous Galerkin method ; structural acoustics ; wave equation ; Engineering ; Engineering General
    Source: Wiley InterScience Backfile Collection 1832-2000
    Topics: Mathematics , Technology
    Notes: A time-discontinuous Galerkin space-time finite element method is formulated for the exterior structural acoustics problem in two space dimensions. The problem is posed over a bounded computational domain with local time-dependent radiation (absorbing) boundary conditions applied to the fluid truncation boundary. Absorbing boundary conditions are incorporated as ‘natural’ boundary conditions in the space-time variational equation, i.e. they are enforced weakly in both space and time. Following Bayliss and Turkel, time-dependent radiation boundary conditions for the two-dimensional wave equation are developed from an asymptotic approximation to the exact solution in the frequency domain expressed in negative powers of a non-dimensional wavenumber. In this paper, we undertake a brief development of the time-dependent radiation boundary conditions, establishing their relationship to the exact impedance (Dirichlet-to-Neumann map) for the acoustic fluid, and characterize their accuracy when implemented in our space-time finite element formulation for transient structural acoustics. Stability estimates are reported together with an analysis of the positive form of the matrix problem emanating from the space-time variational equations for the coupled fluid-structure system. Several numerical simulations of transient radiation and scattering in two space dimensions are presented to demonstrate the effectiveness of the space-time method.
    Additional Material: 13 Ill.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 2
    Electronic Resource
    Electronic Resource
    Chichester [u.a.] : Wiley-Blackwell
    International Journal for Numerical Methods in Engineering 38 (1995), S. 371-397 
    ISSN: 0029-5981
    Keywords: Helmholtz equation ; least squares ; Galerkin method ; Fourier analysis ; Engineering ; Engineering General
    Source: Wiley InterScience Backfile Collection 1832-2000
    Topics: Mathematics , Technology
    Notes: In this paper a Galerkin least-squares (GLS) finite element method, in which residuals in least-squares form are added to the standard Galerkin variational equation, is developed to solve the Helmholtz equation in two dimensions. An important feature of GLS methods is the introduction of a local mesh parameter that may be designed to provide accurate solutions with relatively coarse meshes. Previous work has accomplished this for the one-dimensional Helmholtz equation using dispersion analysis. In this paper, the selection of the GLS mesh parameter for two dimensions is considered, and leads to elements that exhibit improved phase accuracy. For any given direction of wave propagation, an optimal GLS mesh parameter is determined using two-dimensional Fourier analysis. In general problems, the direction of wave propagation will not be known a priori. In this case, an optimal GLS parameter is found which reduces phase error for all possible wave vector orientations over elements. The optimal GLS parameters are derived for both consistent and lumped mass approximations. Several numerical examples are given and the results compared with those obtained from the Galerkin method. The extension of GLS to higher-order quadratic interpolations is also presented.
    Additional Material: 20 Ill.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 3
    Electronic Resource
    Electronic Resource
    Chichester : Wiley-Blackwell
    International Journal for Numerical Methods in Fluids 28 (1998), S. 1217-1239 
    ISSN: 0271-2091
    Keywords: multiphase ; multifluid ; multigrid ; FAS ; local coupled solver ; Engineering ; Numerical Methods and Modeling
    Source: Wiley InterScience Backfile Collection 1832-2000
    Topics: Mechanical Engineering, Materials Science, Production Engineering, Mining and Metallurgy, Traffic Engineering, Precision Mechanics
    Notes: In recent years multigrid algorithms have been applied to increasingly difficult systems of partial differential equations and major improvements in both speed of convergence and robustness have been achieved. Problems involving several interacting fluids are of great interest in many industrial applications, especially in the process and petro-chemical sectors. However, the multifluid version of the Navier-Stokes equations is extremely complex and represents a challenge to advanced numerical algorithms. In this paper, we describe an extension of the full approximation storage (FAS) multigrid algorithm to the multifluid equations. A number of special issues had to be addressed. The first was the development of a customised, non-linear, coupled relaxation scheme for the smoothing step. Automatic differentiation was used to facilitate the coding of a robust, globally convergent quasi-Newton method. It was also necessary to use special inter-grid transfer operators to maintain the realisability of the solution. Algorithmic details are given and solutions for a series of test problems are compared with those from a widely validated, commercial code. The new approach has proved to be robust; it achieves convergence without resorting to specialised initialisation methods. Moreover, even though the rate of convergence is complex, the method has achieved very good reduction factors: typically five orders of magnitude in 50 cycles. © 1998 John Wiley & Sons, Ltd.
    Additional Material: 13 Ill.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 4
    Electronic Resource
    Electronic Resource
    Chichester : Wiley-Blackwell
    International Journal for Numerical Methods in Fluids 24 (1997), S. 355-373 
    ISSN: 0271-2091
    Keywords: computational fluid dynamics ; transonic airfoils ; numerical uncertainty ; Engineering ; Numerical Methods and Modeling
    Source: Wiley InterScience Backfile Collection 1832-2000
    Topics: Mechanical Engineering, Materials Science, Production Engineering, Mining and Metallurgy, Traffic Engineering, Precision Mechanics
    Notes: Numerical uncertainties are quantified for calculations of transonic flow around a divergent trailing edge (DTE) supercritical aerofoil. The Reynolds-averaged Navier-Stokes equations are solved using a linearized block implicit solution procedure and mixing-length turbulence model. This procedure has reproduced measurements around supercritical aerofoils with blunt trailing edges that have shock, boundary layer and separated regions. The present effort quantifies numerical uncertainty in these calculations using grid convergence indices which are calculated from aerodynamic coefficients, shock location, dimensions of the recirculating region in the wake of the blunt trailing edge and distributions of surface pressure coefficients. The grid convergence index is almost uniform around the aerofoil, except in the shock region and at the point where turbulence transition was fixed. The grid convergence index indicates good convergence for lift but only fair convergence for moment and drag and also confirms that drag calculations are more sensitive to numerical error. © 1997 by John Wiley and Sons, Ltd.
    Additional Material: 15 Ill.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...