ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
Filter
  • Animals  (602)
  • Chemical Engineering
  • 1995-1999  (733)
  • 1
    Publication Date: 1996-10-25
    Description: The human genome is thought to harbor 50,000 to 100,000 genes, of which about half have been sampled to date in the form of expressed sequence tags. An international consortium was organized to develop and map gene-based sequence tagged site markers on a set of two radiation hybrid panels and a yeast artificial chromosome library. More than 16,000 human genes have been mapped relative to a framework map that contains about 1000 polymorphic genetic markers. The gene map unifies the existing genetic and physical maps with the nucleotide and protein sequence databases in a fashion that should speed the discovery of genes underlying inherited human disease. The integrated resource is available through a site on the World Wide Web at http://www.ncbi.nlm.nih.gov/SCIENCE96/.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Schuler, G D -- Boguski, M S -- Stewart, E A -- Stein, L D -- Gyapay, G -- Rice, K -- White, R E -- Rodriguez-Tome, P -- Aggarwal, A -- Bajorek, E -- Bentolila, S -- Birren, B B -- Butler, A -- Castle, A B -- Chiannilkulchai, N -- Chu, A -- Clee, C -- Cowles, S -- Day, P J -- Dibling, T -- Drouot, N -- Dunham, I -- Duprat, S -- East, C -- Edwards, C -- Fan, J B -- Fang, N -- Fizames, C -- Garrett, C -- Green, L -- Hadley, D -- Harris, M -- Harrison, P -- Brady, S -- Hicks, A -- Holloway, E -- Hui, L -- Hussain, S -- Louis-Dit-Sully, C -- Ma, J -- MacGilvery, A -- Mader, C -- Maratukulam, A -- Matise, T C -- McKusick, K B -- Morissette, J -- Mungall, A -- Muselet, D -- Nusbaum, H C -- Page, D C -- Peck, A -- Perkins, S -- Piercy, M -- Qin, F -- Quackenbush, J -- Ranby, S -- Reif, T -- Rozen, S -- Sanders, C -- She, X -- Silva, J -- Slonim, D K -- Soderlund, C -- Sun, W L -- Tabar, P -- Thangarajah, T -- Vega-Czarny, N -- Vollrath, D -- Voyticky, S -- Wilmer, T -- Wu, X -- Adams, M D -- Auffray, C -- Walter, N A -- Brandon, R -- Dehejia, A -- Goodfellow, P N -- Houlgatte, R -- Hudson, J R Jr -- Ide, S E -- Iorio, K R -- Lee, W Y -- Seki, N -- Nagase, T -- Ishikawa, K -- Nomura, N -- Phillips, C -- Polymeropoulos, M H -- Sandusky, M -- Schmitt, K -- Berry, R -- Swanson, K -- Torres, R -- Venter, J C -- Sikela, J M -- Beckmann, J S -- Weissenbach, J -- Myers, R M -- Cox, D R -- James, M R -- Bentley, D -- Deloukas, P -- Lander, E S -- Hudson, T J -- HG00098/HG/NHGRI NIH HHS/ -- HG00206/HG/NHGRI NIH HHS/ -- HG00835/HG/NHGRI NIH HHS/ -- Wellcome Trust/United Kingdom -- etc. -- New York, N.Y. -- Science. 1996 Oct 25;274(5287):540-6.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉National Center for Biotechnology Information, National Library of Medicine, National Institutes of Health, 8600 Rockville Pike, Bethesda, MD 20894, USA.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/8849440" target="_blank"〉PubMed〈/a〉
    Keywords: Amino Acid Sequence ; Animals ; Base Sequence ; Cell Line ; *Chromosome Mapping ; Chromosomes, Artificial, Yeast ; Computer Communication Networks ; DNA, Complementary/genetics ; Databases, Factual ; Gene Expression ; Genetic Markers ; *Genome, Human ; *Human Genome Project ; Humans ; Multigene Family ; RNA, Messenger/genetics ; Sequence Homology, Nucleic Acid ; Sequence Tagged Sites
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 2
    Publication Date: 1997-11-05
    Description: To create mice expressing exclusively human sickle hemoglobin (HbS), transgenic mice expressing human alpha-, gamma-, and betaS-globin were generated and bred with knockout mice that had deletions of the murine alpha- and beta-globin genes. These sickle cell mice have the major features (irreversibly sickled red cells, anemia, multiorgan pathology) found in humans with sickle cell disease and, as such, represent a useful in vivo system to accelerate the development of improved therapies for this common genetic disease.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Paszty, C -- Brion, C M -- Manci, E -- Witkowska, H E -- Stevens, M E -- Mohandas, N -- Rubin, E M -- HL20985/HL/NHLBI NIH HHS/ -- HL31579/HL/NHLBI NIH HHS/ -- N01-HB-07086/HB/NHLBI NIH HHS/ -- New York, N.Y. -- Science. 1997 Oct 31;278(5339):876-8.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Human Genome Center and Department of Subcellular Structure, Lawrence Berkeley National Laboratory, 1 Cyclotron Road (MS 74-157), University of California, Berkeley, CA 94720, USA. c_paszty@csa2.lbl.gov〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/9346488" target="_blank"〉PubMed〈/a〉
    Keywords: Anemia, Sickle Cell/*genetics/pathology ; Animals ; Disease Models, Animal ; Female ; Globins/genetics ; Hemoglobin, Sickle/genetics ; Humans ; Male ; Mice ; Mice, Inbred C57BL ; Mice, Knockout ; Mice, Transgenic
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 3
    Publication Date: 1998-10-23
    Description: A map of 30,181 human gene-based markers was assembled and integrated with the current genetic map by radiation hybrid mapping. The new gene map contains nearly twice as many genes as the previous release, includes most genes that encode proteins of known function, and is twofold to threefold more accurate than the previous version. A redesigned, more informative and functional World Wide Web site (www.ncbi.nlm.nih.gov/genemap) provides the mapping information and associated data and annotations. This resource constitutes an important infrastructure and tool for the study of complex genetic traits, the positional cloning of disease genes, the cross-referencing of mammalian genomes, and validated human transcribed sequences for large-scale studies of gene expression.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Deloukas, P -- Schuler, G D -- Gyapay, G -- Beasley, E M -- Soderlund, C -- Rodriguez-Tome, P -- Hui, L -- Matise, T C -- McKusick, K B -- Beckmann, J S -- Bentolila, S -- Bihoreau, M -- Birren, B B -- Browne, J -- Butler, A -- Castle, A B -- Chiannilkulchai, N -- Clee, C -- Day, P J -- Dehejia, A -- Dibling, T -- Drouot, N -- Duprat, S -- Fizames, C -- Fox, S -- Gelling, S -- Green, L -- Harrison, P -- Hocking, R -- Holloway, E -- Hunt, S -- Keil, S -- Lijnzaad, P -- Louis-Dit-Sully, C -- Ma, J -- Mendis, A -- Miller, J -- Morissette, J -- Muselet, D -- Nusbaum, H C -- Peck, A -- Rozen, S -- Simon, D -- Slonim, D K -- Staples, R -- Stein, L D -- Stewart, E A -- Suchard, M A -- Thangarajah, T -- Vega-Czarny, N -- Webber, C -- Wu, X -- Hudson, J -- Auffray, C -- Nomura, N -- Sikela, J M -- Polymeropoulos, M H -- James, M R -- Lander, E S -- Hudson, T J -- Myers, R M -- Cox, D R -- Weissenbach, J -- Boguski, M S -- Bentley, D R -- Wellcome Trust/United Kingdom -- New York, N.Y. -- Science. 1998 Oct 23;282(5389):744-6.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Sanger Centre, Hinxton Hall, Hinxton, Cambridge CB10 1SA UK.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/9784132" target="_blank"〉PubMed〈/a〉
    Keywords: Animals ; Chromosomes, Human/*genetics ; Expressed Sequence Tags ; Gene Expression ; Genetic Markers ; *Genome, Human ; Human Genome Project ; Humans ; Internet ; *Physical Chromosome Mapping ; Rats ; Sequence Tagged Sites
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 4
    Publication Date: 1996-11-22
    Description: Liver regeneration stimulated by a loss of liver mass leads to hepatocyte and nonparenchymal cell proliferation and rapid restoration of liver parenchyma. Mice with targeted disruption of the interleukin-6 (IL-6) gene had impaired liver regeneration characterized by liver necrosis and failure. There was a blunted DNA synthetic response in hepatocytes of these mice but not in nonparenchymal liver cells. Furthermore, there were discrete G1 phase (prereplicative stage in the cell cycle) abnormalities including absence of STAT3 (signal transducer and activator of transcription protein 3) activation and depressed AP-1, Myc, and cyclin D1 expression. Treatment of IL-6-deficient mice with a single preoperative dose of IL-6 returned STAT3 binding, gene expression, and hepatocyte proliferation to near normal and prevented liver damage, establishing that IL-6 is a critical component of the regenerative response.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Cressman, D E -- Greenbaum, L E -- DeAngelis, R A -- Ciliberto, G -- Furth, E E -- Poli, V -- Taub, R -- DK44237/DK/NIDDK NIH HHS/ -- DK49210/DK/NIDDK NIH HHS/ -- DK49629/DK/NIDDK NIH HHS/ -- etc. -- New York, N.Y. -- Science. 1996 Nov 22;274(5291):1379-83.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Department of Genetics and Medicine, University of Pennsylvania School of Medicine, 705a Stellar-Chance, 422 Curie Boulevard, Philadelphia, PA 19104-6145, USA.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/8910279" target="_blank"〉PubMed〈/a〉
    Keywords: Animals ; Cyclin D1 ; Cyclins/biosynthesis ; DNA/biosynthesis/metabolism ; DNA-Binding Proteins/metabolism ; G1 Phase ; Gene Expression Regulation ; Gene Targeting ; Genes, Immediate-Early ; Hepatectomy ; Interleukin-6/deficiency/genetics/pharmacology/*physiology ; Liver/*cytology/metabolism/pathology ; Liver Failure/*etiology/pathology ; *Liver Regeneration ; Mice ; Mice, Inbred C57BL ; Mitosis ; Mutation ; Necrosis ; Oncogene Proteins/biosynthesis ; Proto-Oncogene Proteins c-myc/biosynthesis ; STAT3 Transcription Factor ; Trans-Activators/metabolism ; Transcription Factor AP-1/biosynthesis
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 5
    Publication Date: 1999-09-25
    Description: Mass mortalities due to disease outbreaks have recently affected major taxa in the oceans. For closely monitored groups like corals and marine mammals, reports of the frequency of epidemics and the number of new diseases have increased recently. A dramatic global increase in the severity of coral bleaching in 1997-98 is coincident with high El Nino temperatures. Such climate-mediated, physiological stresses may compromise host resistance and increase frequency of opportunistic diseases. Where documented, new diseases typically have emerged through host or range shifts of known pathogens. Both climate and human activities may have also accelerated global transport of species, bringing together pathogens and previously unexposed host populations.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Harvell, C D -- Kim, K -- Burkholder, J M -- Colwell, R R -- Epstein, P R -- Grimes, D J -- Hofmann, E E -- Lipp, E K -- Osterhaus, A D -- Overstreet, R M -- Porter, J W -- Smith, G W -- Vasta, G R -- 1PO1 ES09563/ES/NIEHS NIH HHS/ -- New York, N.Y. -- Science. 1999 Sep 3;285(5433):1505-10.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Ecology and Evolutionary Biology, Cornell University, Ithaca, NY 14853, USA.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/10498537" target="_blank"〉PubMed〈/a〉
    Keywords: Animals ; Aquaculture ; *Climate ; Cnidaria ; *Disease Outbreaks/*veterinary ; Humans ; Infection/epidemiology/*etiology/transmission/*veterinary ; *Marine Biology ; Oceans and Seas ; Water Pollution
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 6
    Publication Date: 1998-09-22
    Description: Fertilin, a member of the ADAM family, is found on the plasma membrane of mammalian sperm. Sperm from mice lacking fertilin beta were shown to be deficient in sperm-egg membrane adhesion, sperm-egg fusion, migration from the uterus into the oviduct, and binding to the egg zona pellucida. Egg activation was unaffected. The results are consistent with a direct role of fertilin in sperm-egg plasma membrane interaction. Fertilin could also have a direct role in sperm-zona binding or oviduct migration; alternatively, the effects on these functions could result from the absence of fertilin activity during spermatogenesis.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Cho, C -- Bunch, D O -- Faure, J E -- Goulding, E H -- Eddy, E M -- Primakoff, P -- Myles, D G -- HD16580/HD/NICHD NIH HHS/ -- U54HD29125/HD/NICHD NIH HHS/ -- New York, N.Y. -- Science. 1998 Sep 18;281(5384):1857-9.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Section of Molecular and Cellular Biology, University of California, Davis, CA 95616, USA.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/9743500" target="_blank"〉PubMed〈/a〉
    Keywords: ADAM Proteins ; Animals ; Calcium/metabolism ; Cell Adhesion ; Cell Membrane/physiology ; Fallopian Tubes ; Female ; Male ; Membrane Fusion ; Membrane Glycoproteins/genetics/metabolism/*physiology ; Metalloendopeptidases/genetics/metabolism/*physiology ; Mice ; Mice, Inbred C57BL ; Mice, Knockout ; Ovum/physiology ; Sperm Capacitation ; *Sperm-Ovum Interactions ; Spermatogenesis ; Spermatozoa/chemistry/*physiology ; Zona Pellucida/physiology
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 7
    Publication Date: 1999-07-10
    Description: Endotoxin, a constituent of Gram-negative bacteria, stimulates macrophages to release large quantities of tumor necrosis factor (TNF) and interleukin-1 (IL-1), which can precipitate tissue injury and lethal shock (endotoxemia). Antagonists of TNF and IL-1 have shown limited efficacy in clinical trials, possibly because these cytokines are early mediators in pathogenesis. Here a potential late mediator of lethality is identified and characterized in a mouse model. High mobility group-1 (HMG-1) protein was found to be released by cultured macrophages more than 8 hours after stimulation with endotoxin, TNF, or IL-1. Mice showed increased serum levels of HMG-1 from 8 to 32 hours after endotoxin exposure. Delayed administration of antibodies to HMG-1 attenuated endotoxin lethality in mice, and administration of HMG-1 itself was lethal. Septic patients who succumbed to infection had increased serum HMG-1 levels, suggesting that this protein warrants investigation as a therapeutic target.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Wang, H -- Bloom, O -- Zhang, M -- Vishnubhakat, J M -- Ombrellino, M -- Che, J -- Frazier, A -- Yang, H -- Ivanova, S -- Borovikova, L -- Manogue, K R -- Faist, E -- Abraham, E -- Andersson, J -- Andersson, U -- Molina, P E -- Abumrad, N N -- Sama, A -- Tracey, K J -- New York, N.Y. -- Science. 1999 Jul 9;285(5425):248-51.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Department of Emergency Medicine and Department of Surgery, North Shore University Hospital-New York University School of Medicine, Manhasset, NY 11030, USA. hwang@picower.edu〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/10398600" target="_blank"〉PubMed〈/a〉
    Keywords: Animals ; Bacteremia/*blood ; Carrier Proteins/genetics/immunology/*metabolism/toxicity ; Cell Line ; Cells, Cultured ; Endotoxemia/*blood ; Endotoxins/blood/*toxicity ; HMGB1 Protein ; High Mobility Group Proteins/genetics/immunology/*metabolism/toxicity ; Humans ; Immune Sera/immunology ; Immunization, Passive ; Interferon-gamma/pharmacology ; Interleukin-1/pharmacology ; Lethal Dose 50 ; Leukocytes, Mononuclear/metabolism ; Lipopolysaccharides/toxicity ; Macrophages/*metabolism ; Mice ; Mice, Inbred BALB C ; Mice, Inbred C3H ; RNA, Messenger/genetics/metabolism ; Time Factors ; Tumor Necrosis Factor-alpha/pharmacology
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 8
    Publication Date: 1998-09-11
    Description: The localization of substance P in brain regions that coordinate stress responses and receive convergent monoaminergic innervation suggested that substance P antagonists might have psychotherapeutic properties. Like clinically used antidepressant and anxiolytic drugs, substance P antagonists suppressed isolation-induced vocalizations in guinea pigs. In a placebo-controlled trial in patients with moderate to severe major depression, robust antidepressant effects of the substance P antagonist MK-869 were consistently observed. In preclinical studies, substance P antagonists did not interact with monoamine systems in the manner seen with established antidepressant drugs. These findings suggest that substance P may play an important role in psychiatric disorders.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Kramer, M S -- Cutler, N -- Feighner, J -- Shrivastava, R -- Carman, J -- Sramek, J J -- Reines, S A -- Liu, G -- Snavely, D -- Wyatt-Knowles, E -- Hale, J J -- Mills, S G -- MacCoss, M -- Swain, C J -- Harrison, T -- Hill, R G -- Hefti, F -- Scolnick, E M -- Cascieri, M A -- Chicchi, G G -- Sadowski, S -- Williams, A R -- Hewson, L -- Smith, D -- Carlson, E J -- Hargreaves, R J -- Rupniak, N M -- New York, N.Y. -- Science. 1998 Sep 11;281(5383):1640-5.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Merck Research Laboratories, West Point, PA 19456, USA. Mark_Kramer@merck.com〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/9733503" target="_blank"〉PubMed〈/a〉
    Keywords: Adolescent ; Adult ; Aged ; Amygdala/drug effects/metabolism ; Animals ; Antidepressive Agents, Second-Generation/adverse ; effects/metabolism/pharmacology/*therapeutic use ; Behavior, Animal/drug effects ; Brain/drug effects/metabolism ; Depressive Disorder/*drug therapy/etiology/metabolism ; Female ; Gerbillinae ; Guinea Pigs ; Humans ; Male ; Middle Aged ; Morpholines/adverse effects/metabolism/pharmacology/*therapeutic use ; *Neurokinin-1 Receptor Antagonists ; Norepinephrine/physiology ; Paroxetine/therapeutic use ; Receptors, Neurokinin-1/metabolism ; Serotonin/physiology ; Stress, Psychological/drug therapy ; Substance P/*antagonists & inhibitors/metabolism ; Vocalization, Animal/drug effects
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 9
    Publication Date: 1998-05-02
    Description: Accuracy in transfer RNA (tRNA) splicing is essential for the formation of functional tRNAs, and hence for gene expression, in both Eukaryotes and Archaea. The specificity for recognition of the tRNA precursor (pre-tRNA) resides in the endonuclease, which removes the intron by making two independent endonucleolytic cleavages. Although the eukaryal and archaeal enzymes appear to use different features of pre-tRNAs to determine the sites of cleavage, analysis of hybrid pre-tRNA substrates containing eukaryal and archaeal sequences, described here, reveals that the eukaryal enzyme retains the ability to use the archaeal recognition signals. This result indicates that there may be a common ancestral mechanism for recognition of pre-tRNA by proteins.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Fabbri, S -- Fruscoloni, P -- Bufardeci, E -- Di Nicola Negri, E -- Baldi, M I -- Attardi, D G -- Mattoccia, E -- Tocchini-Valentini, G P -- New York, N.Y. -- Science. 1998 Apr 10;280(5361):284-6.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉EniChem, Istituto Guido Donegani SpA, Laboratori di Biotecnologie, 00015 Monterotondo, Rome, Italy.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/9535657" target="_blank"〉PubMed〈/a〉
    Keywords: Animals ; Anticodon ; Base Composition ; Base Sequence ; Endoribonucleases/chemistry/*metabolism ; Introns ; Molecular Sequence Data ; Nucleic Acid Conformation ; RNA Precursors/*chemistry/*metabolism ; *RNA Splicing ; RNA, Archaeal/*chemistry/*metabolism ; RNA, Transfer, Phe/chemistry/metabolism ; Saccharomyces cerevisiae/enzymology ; Substrate Specificity ; Xenopus
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 10
    Publication Date: 1997-11-21
    Description: The gene responsible for autosomal dominant, fully penetrant, nonsyndromic sensorineural progressive hearing loss in a large Costa Rican kindred was previously localized to chromosome 5q31 and named DFNA1. Deafness in the family is associated with a protein-truncating mutation in a human homolog of the Drosophila gene diaphanous. The truncation is caused by a single nucleotide substitution in a splice donor, leading to a four-base pair insertion in messenger RNA and a frameshift. The diaphanous protein is a profilin ligand and target of Rho that regulates polymerization of actin, the major component of the cytoskeleton of hair cells of the inner ear.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Lynch, E D -- Lee, M K -- Morrow, J E -- Welcsh, P L -- Leon, P E -- King, M C -- R01-DC01076/DC/NIDCD NIH HHS/ -- New York, N.Y. -- Science. 1997 Nov 14;278(5341):1315-8.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Department of Medicine, University of Washington, Seattle, WA 98195, USA. eric@lynch.com〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/9360932" target="_blank"〉PubMed〈/a〉
    Keywords: Actins/*metabolism ; *Adaptor Proteins, Signal Transducing ; Amino Acid Sequence ; Animals ; Base Sequence ; Carrier Proteins/chemistry/*genetics/physiology ; Chromosome Mapping ; Chromosomes, Human, Pair 5 ; Cochlea/metabolism ; *Contractile Proteins ; Deafness/*genetics/metabolism/pathology ; Drosophila/genetics ; *Drosophila Proteins ; Female ; Frameshift Mutation ; GTP-Binding Proteins/metabolism ; Gene Expression ; Hair Cells, Auditory/*metabolism/ultrastructure ; Humans ; Male ; Microfilament Proteins/metabolism ; Molecular Sequence Data ; Pedigree ; Profilins ; RNA Splicing ; RNA, Messenger/genetics/metabolism ; X Chromosome
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...