ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    Electronic Resource
    Electronic Resource
    Springer
    Oecologia 117 (1998), S. 391-395 
    ISSN: 1432-1939
    Keywords: Key wordsErythronium japonicum ; Female-biased sex allocation ; Hermaphroditic plants ; Sink-limited fruit growth
    Source: Springer Online Journal Archives 1860-2000
    Topics: Biology
    Notes: Abstract Using four populations of the liliaceous perennial Erythronium japonicum, I examined the hypothesis that sex allocation will be female-biased if the duration of sink-limited growth of fruits, during which fruits grow exponentially, is long. I found that all marked fruits in each population had a period of sink-limited growth. Among the four populations, the mean length of sink-limited growth increased, and the mean dry mass ratio of the sum of the corolla and androecium/fruit decreased, in a consistent order. Thus, plants in populations where the duration of sink-limited growth was long allocated relatively more of their resources to their female functions. This result was consistent with the above hypothesis.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 2
    Electronic Resource
    Electronic Resource
    Springer
    Evolutionary ecology 12 (1998), S. 477-485 
    ISSN: 1573-8477
    Keywords: colonization hypothesis ; evolutionarily stable strategy ; non-sib-competition ; safe sites ; sib-competition ; wind-dispersal structures ; wind-dispersed seeds ; wing ; wing-loading
    Source: Springer Online Journal Archives 1860-2000
    Topics: Biology
    Notes: Abstract We developed a game-theoretic model for wind-dispersed seed production to examine the seed mass–dispersal ability relationship and the evolutionarily stable distance of seed dispersal in terms of exploitation of safe sites. We assumed trade-offs between masses of the embryo (including albumen) and the wind-dispersal structures per seed, and also between seed mass and number of seeds per parent. We showed that ESS wing-loading is independent of embryo mass; that is, heavy seeds are not poor dispersers if the cost of producing wind-dispersal structures per unit area is constant. The ESS embryo mass per seed depends only on the factors which determine the probability of a seedling being established from a seed. However, wing-loading was found to increase with embryo mass when the change in length was isometric and there was a negative correlation between seed mass and dispersal ability. Thus, the area–mass relationship in wind-dispersal structures may have large effects on the ESS production of wind-dispersed seeds. On the other hand, given that only a limited number of adults can be established at a safe site, the ESS seed dispersal distance depends on the relative degree of sib to non-sib competition. A parent disperses its seeds over a wide area to exploit many safe sites if sib competition is strong. However, it disperses its seeds within a narrow area if the mean number of parents per unit area is large, or if non-sib competition is strong. Thus, in addition to an upper limit on the number of adults per safe site, the degree of sib and non-sib competition may be important for the ESS dispersal distance in wind-dispersed seeds.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 3
    Electronic Resource
    Electronic Resource
    Springer
    Evolutionary ecology 9 (1995), S. 444-452 
    ISSN: 1573-8477
    Keywords: sapling growth ; gap formation ; resource allocation model
    Source: Springer Online Journal Archives 1860-2000
    Topics: Biology
    Notes: Summary A model was developed to examine the ESS sapling growth waiting for future gap formation under closed canopy. Assumptions are: a sapling has two parts, a trunk and a photosynthetic part, and allocates annual photosynthates to these two parts; and a sapling with a larger photosynthetic part has a larger production rate, but a sapling with a larger trunk is more successful in competition after gap formation. The ESS growth schedule of a sapling typically consists of three phases: (1) the sapling first allocates all annual photosynthates to the photosynthetic part, then (2) it allocates annual photosynthates both to its trunk and to photosynthetic part, and both parts grow simultaneously, and finally (3) it also allocates annual photosynthates to both parts, but the size of the photosynthetic part stays constant due to annual loss, and only the trunk size increases. A sapling should allocate photosynthates more to the trunk if mortality or probability of gap formation is large. However, a sapling should allocate photosynthates more to the photosynthetic part if large trunks are strongly advantageous in competition after gap formation.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 4
    Electronic Resource
    Electronic Resource
    Springer
    Evolutionary ecology 9 (1995), S. 495-507 
    ISSN: 1573-8477
    Keywords: seed size ; attractiveness ; pollination ; selfing rate ; size—number trade-off ; optimal allocation model
    Source: Springer Online Journal Archives 1860-2000
    Topics: Biology
    Notes: Summary I developed a model for seed size variation among plants assuming that the pollen captured per flower depends on both the allocation to pollen capture mechanisms per flower and the number of flowers on each plant. I showed that the optimal seed size increases with (1) the total resource allocation to reproduction, (2) decreasing outcross pollen availability, (3) decreasing probability of seedling establishment and (4) decreasing selfing rate. However, optimal seed size does not depend on the total resource allocation if the total number of pollen grains captured by a plant increases linearly with its flower number. In addition, the optimal seed size is not always positively correlated with the optimal resource allocation to pollen capture mechanisms per flower. I discussed implications of the results for seasonal decline in seed size and seed size variations among populations, such as alutitudinal variation.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 5
    Publication Date: 1998-12-07
    Print ISSN: 0029-8549
    Electronic ISSN: 1432-1939
    Topics: Biology
    Published by Springer
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...