ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
Filter
  • Physics  (19)
  • Wiley-Blackwell  (19)
  • American Institute of Physics
  • American Physical Society
  • 1995-1999  (19)
  • 1
    Electronic Resource
    Electronic Resource
    Bognor Regis [u.a.] : Wiley-Blackwell
    Journal of Polymer Science Part B: Polymer Physics 35 (1997), S. 397-405 
    ISSN: 0887-6266
    Keywords: mesogenic epoxy resin ; liquid crystalline thermosets ; anisotropy ; network chain orientation ; heat resistance ; Physics ; Polymer and Materials Science
    Source: Wiley InterScience Backfile Collection 1832-2000
    Topics: Chemistry and Pharmacology , Physics
    Notes: The epoxy resin containing a typical mesogenic group such as biphenol was cured with catechol novolak and aromatic diamines which have neighboring active hydrogens. In the biphenol-type epoxy resin cured with catechol novolak, 4,4′ diaminodiphenylmethane, and p-phenylenediamine (PPD), the glass-rubber transition almost disappeared, and thus a very high elastic modulus was obtained in the high temperature region. It is clear that the thermal motion of the network chains is significantly suppressed in these cured systems. In addition, in the PPD-cured system, a characteristic pattern like a schlieren texture was clearly observed under the crossed polarized optical microscope. Thus we conclude that the mesogenic group contained in the epoxy molecule is oriented in the networks when the mesogenic epoxy resin is cured with phenols and diamines which have neighboring active hydrogens. On the other hand, the biphenol-type resin cured with 3,3′,5,5′-tetraethyl-4,4′-diamino diphenylmethane (TEDDM) showed a well-defined glass-rubber transition and, thus, a low rubbery modulus. In this cured system, no characteristic pattern was observed under the crossed polarized light. These results show that the large branches, such as ethyl groups on the network chains, prevent the orientation of network chains which contain the mesogenic group. © 1997 John Wiley & Sons, Inc.
    Additional Material: 10 Ill.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 2
    Electronic Resource
    Electronic Resource
    Bognor Regis [u.a.] : Wiley-Blackwell
    Journal of Polymer Science Part B: Polymer Physics 36 (1998), S. 439-445 
    ISSN: 0887-6266
    Keywords: cholesteric order ; electron microscopy ; periodical lamellar structure ; macromolecules ; Physics ; Polymer and Materials Science
    Source: Wiley InterScience Backfile Collection 1832-2000
    Topics: Chemistry and Pharmacology , Physics
    Notes: The macromolecular cholesteric structure in the ethyl-cyanoethyl cellulose [(E-CE)C]/acrylic acid [AA] cholesteric liquid crystalline solutions is studied by directly observing the morphology and structure of the ethyl-cyanoethyl cellulose [(E-CE)C]/polyacrylic acid [PAA] using electron microscopy. A periodical lamellar structure is observed in ultrathin slices of the composites with cholesteric order by both transmission electron microscopy (TEM) and low-voltage scanning electron microscopy (LVSEM). It is suggested that the periodical lamellar structure is induced by the twist of the molecular orientation in the cholesteric phase and reflects the structural features of the macromolecular cholesteric phase. The macromolecular cholesteric phase exhibits the twisted ring morphology in the initial stage of the formation of the liquid crystalline phase. The swelling of the ultrathin slices with cholesteric order in water is heterogeneous, which suggests the tight packing of the (E-CE)C chains in the direction of the helix axis in the macromolecular cholesteric phase. © 1998 John Wiley & Sons, Inc. J Polym Sci B: Polym Phys 36: 439-445, 1998
    Additional Material: 10 Ill.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 3
    Electronic Resource
    Electronic Resource
    Bognor Regis [u.a.] : Wiley-Blackwell
    Journal of Polymer Science Part B: Polymer Physics 35 (1997), S. 1463-1472 
    ISSN: 0887-6266
    Keywords: adhesion ; oxide coating ; thickness effects ; fragmentation test ; adhesive strength ; cohesive strength ; Physics ; Polymer and Materials Science
    Source: Wiley InterScience Backfile Collection 1832-2000
    Topics: Chemistry and Pharmacology , Physics
    Notes: Fragmentation tests in the uniaxial mode were performed on poly (ethylene terephthalate) (PET) films coated with a silicon oxide layer of thickness ranging from 30 to 156 nm. The coating's fragmentation process was investigated to reveal the crack onset strain and the crack density at fragmentation saturation. Adhesive strength was modeled from the Kelly-Tyson approach, including a Weibull distribution of the coating strength. The prediction was found to be independent of coating thickness, and equal to the substrate shear stress at saturation. The cohesive strength of the coating was characterized from the crack onset strain. The measured decrease in crack onset strain with coating thickness increase was modeled by means of Weibull and fracture mechanics theories, the latter providing the best predictions. © 1997 John Wiley & Sons, Inc. J Polym Sci B: Polym Phys 35: 1463-1472, 1997
    Additional Material: 7 Ill.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 4
    Electronic Resource
    Electronic Resource
    Bognor Regis [u.a.] : Wiley-Blackwell
    Journal of Polymer Science Part B: Polymer Physics 36 (1998), S. 425-431 
    ISSN: 0887-6266
    Keywords: poly(arylene ether ketone) ; gas permeability ; Physics ; Polymer and Materials Science
    Source: Wiley InterScience Backfile Collection 1832-2000
    Topics: Chemistry and Pharmacology , Physics
    Notes: In this work we present the results from studies on novel poly(arylene ether ketone)s, including gas permeability, wide-angle x-ray diffraction (WAXD), and dynamic mechanical analysis (DMA). Poly(arylene ether ketone)s containing 2,2′- and 3,3′-dibenzoylbiphenyl (DBBP) moieties were characterized to study the effect of biphenyl substitution on gas transport properties. Gas permeabilities of naphthalene-containing poly(arylene ether ketone)s were also measured. Higher permeabilities were observed for polymers prepared with 6F-BPA, compared to 9,9-bis(4-hydroxyphenyl)fluorene (HPF). The naphthalene-containing polymers exhibited higher permeabilities than the DBBP polymers, except for a polymer having the 2,2′-DBBP and tetramethylbiphenyl moieties. Based on our work, and results reported in the literature, the 3,3′-DBBP polymers showed the lowest permeabilities for DBBP-containing poly-(arylene ether ketone)s. The low permeabilities are due to more efficiently packed chains brought on by greater flexibility of the backbone, compared to the other polymers studied. DMA studies confirmed the higher barriers to rotation which are believed to be responsible for 2,2′-DBBP polymers having similar selectivities compared to 3,3′-DBBP polymers. © 1998 John Wiley & Sons, Inc. J Polym Sci B: Polym Phys 36: 425-431, 1998
    Additional Material: 9 Ill.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 5
    Electronic Resource
    Electronic Resource
    Bognor Regis [u.a.] : Wiley-Blackwell
    Journal of Polymer Science Part B: Polymer Physics 35 (1997), S. 2219-2231 
    ISSN: 0887-6266
    Keywords: nylons ; crystallinity ; DSC ; x-ray diffraction ; complications ; Physics ; Polymer and Materials Science
    Source: Wiley InterScience Backfile Collection 1832-2000
    Topics: Chemistry and Pharmacology , Physics
    Notes: Differential scanning calorimetry (DSC) is one of the most widely used technique for measuring crystallinity in the polymer industry. The major source of error in the crystalline index (CIDSC) of low crystallinity polymeric articles, is the development of further crystallinity during the DSC scan. Although, this type of cold crystallization is obvious, and thus accounted for in polymers like polyethylene terephthalate, nylons are a difficult class of materials in that respect. The major contributing factors to the failure of DSC in measuring low levels of crystallinity in nylons are identified to be (1) silent crystallization between the glass (Tg) and melting (Tm) transitions, (2) extreme difficulties in packing a moisture-free nylon in the sample pan (the response due to traces of moisture being a broad endotherm competing with a broad exothermic crystallization), and (3) a sub-Tm exotherm, especially in low crystallinity nylons, due to relaxation of the processing-induced stresses. These factors, specific to nylons, mask the observation of cold crystallization and lead to substantially higher than real crystallinities. This manuscript deals with such complications and corrective actions using commercial nylon 6 films of CIDSC = 0-40%. X-ray diffraction measurements have been included to support the validity of our improved DSC methodology. © 1997 John Wiley & Sons, Inc. J Polym Sci B: Polym Phys 35: 2219-2231, 1997
    Additional Material: 9 Ill.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 6
    Electronic Resource
    Electronic Resource
    Bognor Regis [u.a.] : Wiley-Blackwell
    Journal of Polymer Science Part B: Polymer Physics 35 (1997), S. 1449-1461 
    ISSN: 0887-6266
    Keywords: adhesion ; oxide coating ; fragmentation test ; molecular orientation ; substrate temperature ; Physics ; Polymer and Materials Science
    Source: Wiley InterScience Backfile Collection 1832-2000
    Topics: Chemistry and Pharmacology , Physics
    Notes: Fragmentation tests in the uniaxial mode were performed on poly(ethylene terephthalate) (PET) films coated with a 100 nm thin silicon oxide layer. The coating's fragmentation process was analyzed in light of the mechanical behavior of the polymer substrate. It was shown that, upon unloading samples strained to less than 4% nominal strain, strain recovery leads to the closure of coating cracks. The usual fragmentation diagram, which shows the crack density (CD) versus applied strain, was used to identify the various energy dissipation mechanisms controlling the fragmentation process. An alternative presentation of CD versus true stress provided accurate measurements of both fragmentation and saturation onsets. The interfacial strength was modeled from the CD at saturation according to the Kelly-Tyson approach, including a Weibull distribution of the coating strength. The prediction was compared to the substrate shear stress at saturation. Effects of substrate yield, temperature, and molecular orientation are discussed. It was shown that the coating deposition by evaporation on the PET substrate did not induce structural changes at the polymer interface, whereas heat treatments increased the polymer crystallinity in the interfacial zone, resulting in higher interfacial strength. © 1997 John Wiley & Sons, Inc. J. Polym Sci B: Polym Phys 35: 1449-1461, 1997
    Additional Material: 13 Ill.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 7
    Electronic Resource
    Electronic Resource
    Bognor Regis [u.a.] : Wiley-Blackwell
    Journal of Polymer Science Part B: Polymer Physics 35 (1997), S. 1621-1631 
    ISSN: 0887-6266
    Keywords: pulsed photothermal radiometry ; thermal diffusivity ; polymer films ; chain orientation ; thermal anisotropy ; Physics ; Polymer and Materials Science
    Source: Wiley InterScience Backfile Collection 1832-2000
    Topics: Chemistry and Pharmacology , Physics
    Notes: We have developed a pulsed photothermal radiometry technique for determining the thermal diffusivity parallel to the surface of a polymer film that involves flashing a line-shaped laser beam on the surface of the sample at right angle to its length, and monitoring the temperature change with time at a distance from the line source using an infrared detector. Combining this with our previous laser-flash radiometry method for thermal diffusivity measurement perpendicular to the film surface, we can now measure the thermal diffusivity of a polymer film along all directions. These two techniques have been used to study uniaxially and biaxially oriented poly(ethylene terephalate) and uniaxially drawn ultrahigh molecular weight polyethylene films. For uniaxially oriented poly(ethylene terephalate), the thermal diffusivity along the draw direction is substantially higher than that in the transverse direction, which in turn, is slightly higher than that in the thickness direction. For a polyethylene film with a draw ratio of 200, the axial thermal diffusivity is extremely high, being about five times that of stainless steel. The anisotropy of the thermal diffusivity of this film exceeds 90. © 1997 John Wiley & Sons, Inc. J Polym Sci B: Polym Phys 35: 1621-1631, 1997
    Additional Material: 12 Ill.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 8
    Electronic Resource
    Electronic Resource
    Bognor Regis [u.a.] : Wiley-Blackwell
    Journal of Polymer Science Part B: Polymer Physics 35 (1997), S. 2811-2823 
    ISSN: 0887-6266
    Keywords: diblock copolymer ; anisotropic modulus ; order-order transition ; triblock copolymer ; Physics ; Polymer and Materials Science
    Source: Wiley InterScience Backfile Collection 1832-2000
    Topics: Chemistry and Pharmacology , Physics
    Notes: A polystyrene-polyisoprene (PS-PI) diblock copolymer (10,000-50,000 g/mol) and a matched PS&ndashPI-PS triblock (10,000-100,000-10,000 g/mol) were employed to study the effect of chain architecture on the rheological response of ordered block copolymer melts. Both samples adopt hexagonal microstructures with PS cylinders embedded in a PI matrix; on further heating, an order-order transition (OOT) into a cubic array of spheres takes place prior to the order-disorder transition. Each morphology was verified by SAXS and TEM. Interestingly, at the OOT the low-frequency elastic modulus of the diblock increased abruptly, whereas that of the triblock decreased. In contrast, the modulus of the cubic phase was roughly independent of chain architecture. Chain relaxation parallel and perpendicular to the cylinders was probed by measuring the elastic modulus of a macroscopically aligned sample in directions parallel G′∥ and perpendicular (G′⊥) to the cylinder orientation. For both materials G′∥ 〈 G′R 〈 G′⊥ where G′R is the elastic modulus of a randomly oriented sample. This result is attributed to the ability of the unentangled PS blocks to move along the direction of the cylinder axis, and thus relax the stress in the PI matrix in the parallel alignment. In each of the three cylindrical orientations the triblock had a larger modulus than the diblock, which is attributed to the presence of bridging PI blocks that connect distinct PS domains. About 20° below the OOT G′∥ showed a distinct change in its temperature dependence, which, coupled with SAXS measurements, is indicative of the onset of an undulation in the cylinder diameter that presages the pinching off of cylinders into spheres, as recently predicted by theory. The use of oriented samples also permitted SAXS confirmation of an approximate epitaxial relationship between the cylinder and the sphere unit cells, although a distinct change in the location of the structure factor maximum, q*, is noted at the OOT. © 1997 John Wiley & Sons, Inc. J Polym Sci B: Polym Phys 35: 2811-2823, 1997
    Additional Material: 12 Ill.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 9
    Electronic Resource
    Electronic Resource
    Bognor Regis [u.a.] : Wiley-Blackwell
    Journal of Polymer Science Part B: Polymer Physics 36 (1998), S. 1679-1694 
    ISSN: 0887-6266
    Keywords: crystallization kinetics ; thermotropic liquid crystalline polymers ; polyimide ; Physics ; Polymer and Materials Science
    Source: Wiley InterScience Backfile Collection 1832-2000
    Topics: Chemistry and Pharmacology , Physics
    Notes: We have studied the nonisothermal and isothermal crystallization kinetics of an aromatic thermotropic liquid crystalline polyimide synthesized from 1,2,4,5-benzenetetracarboxylic dianhydride (PMDA) and 1,3-bis[4-(4′-aminophenoxy) cumyl] benzene (BACB) by means of differential scanning calorimetry (DSC). Polarized light microscopy (PLM) and wide-angle X-ray diffraction (WAXD) results confirm that this polyimide exhibits a smectic texture. Nonisothermal crystallization showed two strong and one weak exothermic peaks during cooling. The phase transition from isotropic melt to liquid crystalline state is extremely fast which completes in several seconds. The mesophase transition has a small Avrami parameter, n, of approximate 1. The isothermal crystallization of 253-258°C has been examined. The average value n is about 2.6 and the temperature-dependent rate constant k changes about two orders of magnitude in the crystallization temperature range of 6°C. The slope of ln k versus 1/(TcΔT) is calculated to be -2.4 × 105, which suggests nucleation control, via primary and/or secondary nucleation for the crystallization process. During the annealing process, a new phase (slow transition) is induced, which grows gradually with annealing time. At lower annealing temperatures (220-230°C), the slow transition process seems not to be influenced by the crystals formed during cooling process and its Avrami parameter n is ca. 0.3-0.4. However, the slow transition was hindered by the crystals formed during cooling process when annealed at higher temperature (230-240°C). © 1998 John Wiley & Sons, Inc. J Polym Sci B: Polym Phys 36: 1679-1694, 1998
    Additional Material: 15 Ill.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 10
    Electronic Resource
    Electronic Resource
    Bognor Regis [u.a.] : Wiley-Blackwell
    Journal of Polymer Science Part B: Polymer Physics 36 (1998), S. 1669-1677 
    ISSN: 0887-6266
    Keywords: photo-assisted poling ; polymer dynamics ; polymer structure ; nonlinear optical polyimides ; high glass transition temperature ; Physics ; Polymer and Materials Science
    Source: Wiley InterScience Backfile Collection 1832-2000
    Topics: Chemistry and Pharmacology , Physics
    Notes: We have used combinations of light, heat, and electrostatic fields to investigate the orientation of nonlinear azo-chromophores chemically incorporated into high glass transition temperature (Tg) polyimides. A number of nonlinear optical polyimides have been synthesized in which the interaction between the nonlinear optical chromophore and the polymer main chain was systematically altered to determine to what extent this steric interaction influences the orientation of the nonlinear chromophore. Chromophores in polymers may be oriented by a number of methods: (a) polarized light at room temperature (i.e., photo-induced orientation or PIO), (b) polarized light and electric fields (i.e., photo-assisted poling or PAP) at temperatures ranging from room temperature to the polymer Tg, and (c) electric fields at Tg (thermal poling). While thermal poling and PIO are usually possible, PAP depends strongly on the molecular structure of the polymer. Previously we have shown that PIO can be accomplished at room temperature in a system where the nonlinear chromophore is embedded into the polyimide main chain via the donor substituent, and this orientation can only be thermally erased at temperatures approaching Tg. In this article we show that, whereas photoisomerization can efficiently depole donor-embedded polyimides in a matter of few minutes at room temperature, PAP does not induce any polar order. This behavior is in marked contrast to a structurally related, side-chain, nonlinear polyimide, in which the azo chromophore is tethered via a flexible linkage to the polymer backbone. In this case some PAP occurs even at room temperature, while no PAP is observed for a donor-embedded system with a similar Tg. We suggest that the orientation during PAP below Tg in the side-chain polyimide is primarily due to the movement of the azo side chains, and there is a very little coupling of this motion to the main chain. © 1998 John Wiley & Sons, Inc. J Polym Sci B: Polym Phys 36: 1669-1677, 1998
    Additional Material: 5 Ill.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...