ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    Publication Date: 1998-03-21
    Description: The sphingolipid metabolite sphingosine-1-phosphate (SPP) has been implicated as a second messenger in cell proliferation and survival. However, many of its biological effects are due to binding to unidentified receptors on the cell surface. SPP activated the heterotrimeric guanine nucleotide binding protein (G protein)-coupled orphan receptor EDG-1, originally cloned as Endothelial Differentiation Gene-1. EDG-1 bound SPP with high affinity (dissociation constant = 8.1 nM) and high specificity. Overexpression of EDG-1 induced exaggerated cell-cell aggregation, enhanced expression of cadherins, and formation of well-developed adherens junctions in a manner dependent on SPP and the small guanine nucleotide binding protein Rho.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Lee, M J -- Van Brocklyn, J R -- Thangada, S -- Liu, C H -- Hand, A R -- Menzeleev, R -- Spiegel, S -- Hla, T -- DK45659/DK/NIDDK NIH HHS/ -- GM43880/GM/NIGMS NIH HHS/ -- HL49094/HL/NHLBI NIH HHS/ -- etc. -- New York, N.Y. -- Science. 1998 Mar 6;279(5356):1552-5.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Department of Physiology, University of Connecticut School of Medicine, Farmington, CT 06030, USA.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/9488656" target="_blank"〉PubMed〈/a〉
    Keywords: Cadherins/*biosynthesis ; *Cell Aggregation ; Cell Differentiation ; Cell Line ; Cloning, Molecular ; GTP-Binding Proteins/metabolism ; Gene Expression ; Genes, Immediate-Early ; Humans ; Immediate-Early Proteins/genetics/*metabolism ; Intercellular Junctions/*ultrastructure ; Ligands ; *Lysophospholipids ; Mitogen-Activated Protein Kinase 1/metabolism ; Morphogenesis ; Receptors, Cell Surface/genetics/*metabolism ; *Receptors, G-Protein-Coupled ; Receptors, Lysophospholipid ; Signal Transduction ; Sphingosine/*analogs & derivatives/metabolism ; Transfection ; rho GTP-Binding Proteins
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 2
    Publication Date: 1999-10-03
    Description: Experiments using laser-heated diamond anvil cells show that methane (CH4) breaks down to form diamond at pressures between 10 and 50 gigapascals and temperatures of about 2000 to 3000 kelvin. Infrared absorption and Raman spectroscopy, along with x-ray diffraction, indicate the presence of polymeric hydrocarbons in addition to the diamond, which is in agreement with theoretical predictions. Dissociation of CH4 at high pressures and temperatures can influence the energy budgets of planets containing substantial amounts of CH4, water, and ammonia, such as Uranus and Neptune.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Benedetti, L R -- Nguyen, J H -- Caldwell, W A -- Liu, H -- Kruger, M -- Jeanloz, R -- New York, N.Y. -- Science. 1999 Oct 1;286(5437):100-2.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Department of Physics, Department of Geology and Geophysics, University of California, Berkeley, CA 94720, USA.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/10506552" target="_blank"〉PubMed〈/a〉
    Keywords: Diamond/*chemistry ; Evolution, Planetary ; Hot Temperature ; Hydrocarbons/chemistry ; Methane/*chemistry ; *Neptune ; Pressure ; Spectroscopy, Fourier Transform Infrared ; Spectrum Analysis, Raman ; *Uranus ; X-Ray Diffraction
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 3
    Publication Date: 1995-07-28
    Description: Experimental observations and numerical simulations of the large force inhomogeneities present in stationary bead packs are presented. Forces much larger than the mean occurred but were exponentially rare. An exactly soluble model reproduced many aspects of the experiments and simulations. In this model, the fluctuations in the force distribution arise because of variations in the contact angles and the constraints imposed by the force balance on each bead in the pile.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Liu, C H -- Nagel, S R -- Schecter, D A -- Coppersmith, S N -- Majumdar, S -- Narayan, O -- Witten, T A -- New York, N.Y. -- Science. 1995 Jul 28;269(5223):513-5.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/17842361" target="_blank"〉PubMed〈/a〉
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 4
    Publication Date: 1995-06-16
    Description: In vivo somatosensory stimuli evoked the release of substance P from primary afferent neurons that terminate in the spinal cord and stimulated endocytosis of substance P receptors in rat spinal cord neurons. The distal dendrites that showed substance P receptor internalization underwent morphological reorganization, changing from a tubular structure to one characterized by swollen varicosities connected by thin segments. This internalization and dendritic structural reorganization provided a specific image of neurons activated by substance P. Thus receptor internalization can drive reversible structural changes in central nervous system neurons in vivo. Both of these processes may be involved in neuronal plasticity.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Mantyh, P W -- DeMaster, E -- Malhotra, A -- Ghilardi, J R -- Rogers, S D -- Mantyh, C R -- Liu, H -- Basbaum, A I -- Vigna, S R -- Maggio, J E -- NS14627/NS/NINDS NIH HHS/ -- NS21445/NS/NINDS NIH HHS/ -- NS23970/NS/NINDS NIH HHS/ -- etc. -- New York, N.Y. -- Science. 1995 Jun 16;268(5217):1629-32.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Molecular Neurobiology Laboratory, Veterans Administration Medical Center, Minneapolis, MN 55417, USA.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/7539937" target="_blank"〉PubMed〈/a〉
    Keywords: Animals ; Capsaicin/pharmacology ; Dendrites/metabolism/*ultrastructure ; *Endocytosis ; GTP-Binding Proteins/metabolism ; Male ; Neuronal Plasticity ; Neurons/*metabolism/ultrastructure ; Physical Stimulation ; Rats ; Rats, Sprague-Dawley ; Receptors, Neurokinin-1/*metabolism ; Spinal Cord/cytology/*metabolism ; Substance P/pharmacology
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...