ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
Filter
  • *Gene Deletion  (1)
  • *Saccharomyces cerevisiae Proteins  (1)
  • *Selection, Genetic  (1)
  • American Association for the Advancement of Science (AAAS)  (2)
  • 1995-1999  (2)
Collection
Publisher
  • American Association for the Advancement of Science (AAAS)  (2)
Years
Year
  • 1
    Publication Date: 1999-08-07
    Description: The functions of many open reading frames (ORFs) identified in genome-sequencing projects are unknown. New, whole-genome approaches are required to systematically determine their function. A total of 6925 Saccharomyces cerevisiae strains were constructed, by a high-throughput strategy, each with a precise deletion of one of 2026 ORFs (more than one-third of the ORFs in the genome). Of the deleted ORFs, 17 percent were essential for viability in rich medium. The phenotypes of more than 500 deletion strains were assayed in parallel. Of the deletion strains, 40 percent showed quantitative growth defects in either rich or minimal medium.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Winzeler, E A -- Shoemaker, D D -- Astromoff, A -- Liang, H -- Anderson, K -- Andre, B -- Bangham, R -- Benito, R -- Boeke, J D -- Bussey, H -- Chu, A M -- Connelly, C -- Davis, K -- Dietrich, F -- Dow, S W -- El Bakkoury, M -- Foury, F -- Friend, S H -- Gentalen, E -- Giaever, G -- Hegemann, J H -- Jones, T -- Laub, M -- Liao, H -- Liebundguth, N -- Lockhart, D J -- Lucau-Danila, A -- Lussier, M -- M'Rabet, N -- Menard, P -- Mittmann, M -- Pai, C -- Rebischung, C -- Revuelta, J L -- Riles, L -- Roberts, C J -- Ross-MacDonald, P -- Scherens, B -- Snyder, M -- Sookhai-Mahadeo, S -- Storms, R K -- Veronneau, S -- Voet, M -- Volckaert, G -- Ward, T R -- Wysocki, R -- Yen, G S -- Yu, K -- Zimmermann, K -- Philippsen, P -- Johnston, M -- Davis, R W -- HG00185-02/HG/NHGRI NIH HHS/ -- HG01627/HG/NHGRI NIH HHS/ -- HG01633/HG/NHGRI NIH HHS/ -- etc. -- New York, N.Y. -- Science. 1999 Aug 6;285(5429):901-6.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Department of Biochemistry, Stanford University School of Medicine, Stanford, CA 94305-5307, USA.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/10436161" target="_blank"〉PubMed〈/a〉
    Keywords: Culture Media ; *Gene Deletion ; Gene Expression Regulation, Fungal ; Gene Targeting ; *Genes, Essential ; Genes, Fungal ; *Genome, Fungal ; *Open Reading Frames ; Phenotype ; Polymerase Chain Reaction ; Recombination, Genetic ; Saccharomyces cerevisiae/*genetics/growth & development
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 2
    Publication Date: 1999-07-27
    Description: Genetic selections were used to find peptides that inhibit biological pathways in budding yeast. The peptides were presented inside cells as peptamers, surface loops on a highly expressed and biologically inert carrier protein, a catalytically inactive derivative of staphylococcal nuclease. Peptamers that inhibited the pheromone signaling pathway, transcriptional silencing, and the spindle checkpoint were isolated. Putative targets for the inhibitors were identified by a combination of two-hybrid analysis and genetic dissection of the target pathways. This analysis identified Ydr517w as a component of the spindle checkpoint and reinforced earlier indications that Ste50 has both positive and negative roles in pheromone signaling. Analysis of transcript arrays showed that the peptamers were highly specific in their effects, which suggests that they may be useful reagents in organisms that lack sophisticated genetics as well as for identifying components of existing biological pathways that are potential targets for drug discovery.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Norman, T C -- Smith, D L -- Sorger, P K -- Drees, B L -- O'Rourke, S M -- Hughes, T R -- Roberts, C J -- Friend, S H -- Fields, S -- Murray, A W -- P41-RR11823/RR/NCRR NIH HHS/ -- New York, N.Y. -- Science. 1999 Jul 23;285(5427):591-5.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Department of Physiology, University of California, San Francisco, CA 94143-0444, USA. tnorman@microbia.com〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/10417390" target="_blank"〉PubMed〈/a〉
    Keywords: Amino Acid Sequence ; Calcium-Calmodulin-Dependent Protein Kinases/metabolism ; Fungal Proteins/metabolism ; G1 Phase ; Galactose/metabolism ; Lipoproteins/metabolism ; Micrococcal Nuclease ; Mitosis ; Molecular Sequence Data ; Peptide Library ; Peptides/genetics/metabolism/*pharmacology ; Pheromones/*metabolism ; Protein Binding ; Protein-Serine-Threonine Kinases ; Protein-Tyrosine Kinases ; Saccharomyces cerevisiae/cytology/genetics/*metabolism ; *Saccharomyces cerevisiae Proteins ; *Selection, Genetic ; *Signal Transduction ; Spindle Apparatus/drug effects/*metabolism ; Transcription, Genetic
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...