ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
Filter
  • Articles  (263)
  • Blackwell Publishing Ltd  (263)
  • American Association for the Advancement of Science (AAAS)
  • Cell Press
  • Institute of Physics
  • 1995-1999  (263)
  • Geosciences  (263)
Collection
  • Articles  (263)
Years
Year
  • 1
    ISSN: 1475-2743
    Source: Blackwell Publishing Journal Backfiles 1879-2005
    Topics: Geosciences , Agriculture, Forestry, Horticulture, Fishery, Domestic Science, Nutrition
    Notes: Abstract. An effective fertilizer recommendation system requires information on seasonal, soil-related and cultural variations in soil mineral nitrogen (N) and nutrient requirements of the crop. This can be provided by dynamic N turnover models, such as listed by Plentinger & Penning De Vries (1996). In this paper, we describe a survey of farmer opinion designed to ascertain what farmers want from such a decision support system. Over 100 farmers were surveyed. Surveyed farmers requested that default values be available for all model inputs. Inputs should be entered both by windows-based menu (for clarity) and tabular format (for speed), have user-selected units, and be fully supported by context-sensitive help. The system should have a hierarchical structure allowing access to fixed parameters, and be compatible with commonly used farm recording packages. Recommendations should be provided both for the field (single and optional application rates), and in tabular format across the whole farm. Simulations should be easily rerun using more recent crop and weather data. Turnover processes underlying recommendations should be illustrated by flow diagrams of flux between pools, pie charts of fertilizer fate, bar charts of movement down the soil profile and graphical plots of changes in N status against time.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 2
    ISSN: 1745-6584
    Source: Blackwell Publishing Journal Backfiles 1879-2005
    Topics: Energy, Environment Protection, Nuclear Power Engineering , Geosciences
    Notes: The ability to predict the transport of dissolved gases in the presence of small amounts of trapped gas in an otherwise water-saturated porous medium is needed for a variety of applications. However, an existing model based on equilibrium partitioning of dissolved gas between aqueous and trapped gas phases does not accurately predict the shape of experimentally observed breakthrough and elution curves in column experiments. The objective of this study was to develop and test a kinetic model for dissolved gas transport that combines the advection-dispersion equation with diffusion controlled mass transfer of dissolved gas between the aqueous and trapped gas phases. The model assumes one-dimensional, steady-state ground-water flow, a single dissolved gas component, and a stationary trapped gas phase with constant volume. The model contains three independent parameters: the Peclet number, P, retardation factor, R, and dimensionless mass transfer parameter, ω. The model accurately described the shape of breakthrough and elution curves for dissolved oxygen in column experiments performed with a poorly graded sand and varying amount and composition of trapped gas. Estimated values of P for the bromide tracer increased from 5.92 to 174, corresponding to a decrease in dispersivity from 5.02 to 0.17 cm, as the trapped gas volume increased from 0 to 30% of the pore space. It is speculated that this effect is due to a narrower pore size distribution (and hence more uniform pore scale velocity distribution) caused by trapped gas bubbles selectively occupying the largest pores. Estimated values of R increased from 1 to 13.6 as the trapped gas volume increased and confirmed earlier observations that even small amounts of trapped gas can significantly reduce rates of dissolved oxygen transport. Estimated values of ω ranged from 0.3 to 12.1. Although it was not possible to independently measure mass transfer coefficients or interfacial areas, values computed from flow rates and estimated w values are consistent with values computed by assuming (1) that interfacial area is proportional to trapped gas volume, (2) that trapped gas bubbles are spheres with diameters the same size as soil particles, and (3) that mass transfer is limited by diffusion of dissolved oxygen through water films surrounding trapped gas bubbles.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 3
    Electronic Resource
    Electronic Resource
    Oxford, UK : Blackwell Publishing Ltd
    Soil use and management 13 (1997), S. 0 
    ISSN: 1475-2743
    Source: Blackwell Publishing Journal Backfiles 1879-2005
    Topics: Geosciences , Agriculture, Forestry, Horticulture, Fishery, Domestic Science, Nutrition
    Notes: Abstract. Ten chalk topsoils (0-25 cm) were repacked into columns in the laboratory. After leaching similar to one year's throughflow in the field, loss of K was equivalent to between 9 and 74kg K/ha. This represented between 3 and 30% of the initial exchangeable K with which loss was poorly correlated. Loss was dependant on the soil solution concentration and was inversely proportional to potassium buffer power.The loss of magnesium in the same columns was between 10 and 22 kg Mg/ha (6-21% of the initial exchangeable Mg). Magnesium loss was poorly correlated with exchangeable Mg.When KCl fertilizer was incorporated into the soils, the increase in leaching of potassium was 1–35% of the K addition. Application to the top of the column resulted in less leaching than when the K was incorporated. Leaching of magnesium was increased by up to 5 kg Mg/ha.Potassium leaching may be delayed by the underlying A/C horizon but pure chalk, with an extremely low buffer power for K, has little ability to retain K. Extremely calcareous topsoils were the most leaky although in practice it is the organic chalk soils on which it is most difficult to attain adequate K levels. On all chalk soils, maintenance of a high K level with K fertilizer is likely to cause unnecessary long-term leaching losses. Annual, rather than biennial, fertilizer applications are to be preferred.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 4
    ISSN: 1475-2743
    Source: Blackwell Publishing Journal Backfiles 1879-2005
    Topics: Geosciences , Agriculture, Forestry, Horticulture, Fishery, Domestic Science, Nutrition
    Notes: Abstract. The mean extractable sulphur (S) concentration in 315 upland topsoil samples collected in 1988/89 from beneath pasture in NE Scotland was 13 μg S g−1 (range 2–77 μg S g−1). More than two thirds of the samples had S concentrations less than that acceptable for productive soils. Continued decreases in atmospheric S inputs may have increased this proportion subsequently. The analysis of herbage S also indicated that two-thirds of the samples were below 0.2% S. A ‘respirometric index’, namely CO2 produced during cellulose decomposition without added S as a percentage of that produced with added S, was significantly less than 100% in a quarter of the soils. Results of three different extraction procedures suggested that sulphate in the soils was present mainly as free plus adsorbed rather than precipitated forms. Soil extraction identified a significant non-sulphate S fraction, presumably organic S. The variability in extractable S stemmed from a combination of geographical, depositional and local site and soil factors. Extractable S was significantly correlated with soil organic matter content and inversely with soil pH and together these factors explained 37% of the variability. While significant differences in mean concentrations between geographical area, soil association and drainage status were evident, no trends could be observed between the major soil subgroups or with altitude.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 5
    ISSN: 1365-2389
    Source: Blackwell Publishing Journal Backfiles 1879-2005
    Topics: Geosciences , Agriculture, Forestry, Horticulture, Fishery, Domestic Science, Nutrition
    Notes: The decomposition of 15N-labelled catch-crop materials (rape, radish and rye), obtained from field experiments, was studied in a chalky Champagne soil during a 60-week incubation at 28°C. Mineralized N was assumed to come from either labile or recalcitrant fractions of plant residues. The labile fraction represented about one-third of the catch-crop N; its mineralization rate constant varied from 0.06 to 0.12 d−1. The decomposition rate of the recalcitrant N fraction ranged from 0.03 × 10−2 to 0.06 × 10−2 d−1. Catch-crop species and rate of incorporation had no effect on N residue mineralized at the end of incubation.The decomposition of labelled rye was monitored in the same soil during a 5-month pot experiment to determine the N availability to an Italian ryegrass crop and the effect of plants on the decomposition processes. The 15N-rye decomposed rapidly both in the presence or absence of Italian ryegrass, but the amounts of N mineralized were influenced by the presence of living roots: 42% of the 15N in labelled rye was present as inorganic N in the pots without plants after 5 months, compared with only 32% in the ryegrass crop. Comparison of microbial-biomass dynamics in both treatments suggested that there had been preferential utilization by soil micro-organisms of materials released from the living roots than the labelled plant residues.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 6
    Electronic Resource
    Electronic Resource
    Oxford, UK : Blackwell Publishing Ltd
    European journal of soil science 48 (1997), S. 0 
    ISSN: 1365-2389
    Source: Blackwell Publishing Journal Backfiles 1879-2005
    Topics: Geosciences , Agriculture, Forestry, Horticulture, Fishery, Domestic Science, Nutrition
    Notes: Investigating the biogeochemistry of plant material decomposition in soil has been restricted by difficulties extracting and identifying organic compounds. In this study the decomposition of 13C- and 15N-labelled Lolium perenne leaves mixed with mineral soil has been investigated over 224 days of incubation under laboratory conditions. Decomposition was followed using short-term rates of CO2 evolution, the amounts of 13C and 15N remaining were determined by mass spectrometry, and 13C and 15N solid-state nuclear magnetic resonance (NMR) spectroscopy was used to characterize chemically the plant material as it decomposed. After 224 days 48% of the added 13C had been lost with a rapid period of C02 evolution over the first 56 days. The fraction of cross-polarization magic angle spinning (CP MAS) 13C NMR spectra represented by O-alkyl-C signal probably in carbohydrates (chemical shift, 60–90 p.p.m.) declined from 60 to 20% of the spectrum (chemical shift, 0–200 p.p.m.) over 224 days. The rate of decline of the total 13C exceeded that of the 60–90 p.p.m. signal during the first 56 days and was similar thereafter. The fraction of the CP MAS 13C NMR spectra represented by the alkyl- and methyl-C (chemical shift, 10–45 p.p.m.) signal increased from 5 to 14% over the first 14 days and was 19% after 224 days. CP MAS 13C NMR of 13C- and 15N-L. perenne contained in 100-μm aperture mesh bags incubated in the soil for 56 days indicated that the remaining material was mainly carbohydrate but there was an increase in the alkyl- and methyl-C associated with the bag's contents. After 224 days incubation of the labelled 13C- and 15N-L. perenne mixed with the soil, 40% of the added N had been lost. Throughout the incubation there was only one signal centred around 100 p.p.m. detectable in the CP MAS 15N NMR spectra. This signal corresponded to amide 15N in peptides and may have been of plant or microbial origin or both. Although there had been substantial interaction between the added 15N and the soil microorganisms, the associated redistribution of 15N from plant to microbial tissues occurred within the amide region. The feasibility of following some of the component processes of plant material decomposition in soil using NMR has been demonstrated in this study and evidence that microbial synthesis contributes to the increase in alkyl- and methyl-C content of soil during decomposition has been represented.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 7
    Electronic Resource
    Electronic Resource
    Oxford, UK : Blackwell Publishing Ltd
    Ground water monitoring & remediation 19 (1999), S. 0 
    ISSN: 1745-6592
    Source: Blackwell Publishing Journal Backfiles 1879-2005
    Topics: Energy, Environment Protection, Nuclear Power Engineering , Geosciences
    Notes: A release of 1,2-dichloroethane. also known as ethylene dichloride (EDC), resulted in shallow subsurface freephase contamination of a Gulf Coast site in the southern United States. The site stratigraphy consists primarily of a low permeability, surficial peat. silt, and clay zone underlain by fractured clay; a confined 12 in deep sand ground water flow zone; a confined 21 m deep fine sand zone of limited ground water flow, followed by a deep aquitard. The Gumbo clay and sandy clay aquitard below the release area overlies and protects the 61 m deep Upper Chicot Aquifer, which is a confined regional aquifer. An ongoing recovery and hydraulic containment program from the primary impacted and laterally and vertically restricted shallow 40-foot sand zone has effectively recovered dense nonaqueous phase liquid (DNAPL) and contained dissolved phase EDC.Natural attenuation of EDC was demonstrated through (1) a laboratory microcosm study substantiating the ability of the native microbial population in the deeper aquifer lo degrade EDC under anaerobic environmental conditions found at the site. (2) field investigations showing reductions in EDC concentrations over time in many of the wells on site, and (3) an evaluation of the ground water for EDC and its degradation products and oilier geo-chemical parameters such as dissolved oxygen, redox potential, and pH. Degradation products of EDC found in the field investigations included 2-chloroeihanol, ethanol. ethene, and ethane. Dissolved EDC concentrations in selected wells between the first recorded samples and the fourth quarter of 1997 ranged from greater than 4% to 99% reductions. First-order exponential decay half-lives ranged from 0.21 to 4.2 years for wells showing decreases in FDC concentrations over time. Elevated methane concentrations indicated carbon dioxide to be the major terminal electron acceptor.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 8
    Electronic Resource
    Electronic Resource
    Oxford, UK : Blackwell Publishing Ltd
    Ground water 34 (1996), S. 0 
    ISSN: 1745-6584
    Source: Blackwell Publishing Journal Backfiles 1879-2005
    Topics: Energy, Environment Protection, Nuclear Power Engineering , Geosciences
    Notes: The isotopic characteristics of municipal landfill leachate and gases (carbon dioxide and methane) are unique relative to the aqueous and gaseous media in most other natural geologic environments. The δ13C of the CO2 in landfills is significantly enriched in 13C, with values as high as +20 ‰ reported. The δ13C and δD values of the methane fall within a range of values representative of microbial methane produced primarily by the acetate-fermentation process. The δD of landfill leachate is strongly enriched in deuterium, by approximately 30 ‰ to nearly 60 ‰ relative to local average precipitation values. This deuterium enrichment is undoubtedly due to the extensive production of microbial methane within the limited reservoir of a landfill. The concentration of the radiogenic isotopes, 14C and 3H, are significantly elevated in both landfill leachate and methane. The 14C values range between approximately 120 and 170 pMC and can be explained by the input of organic material that was affected by the increased 14C content of atmospheric CO2 caused by atmospheric testing of nuclear devices. The tritium measured in leachate, however, is often too high to be explained by previous atmospheric levels and must come from material buried within the landfill. The unique isotopic characteristics observed in landfill leachates and gases provide a very useful technique for confirming whether contamination is from a municipal landfill or some other local source.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 9
    Electronic Resource
    Electronic Resource
    Oxford, UK : Blackwell Publishing Ltd
    Ground water 33 (1995), S. 0 
    ISSN: 1745-6584
    Source: Blackwell Publishing Journal Backfiles 1879-2005
    Topics: Energy, Environment Protection, Nuclear Power Engineering , Geosciences
    Notes: The occurrence of buoyancy-induced vertical flow (sinking) of a bromide (Br−) tracer plume at small injection concentrations is investigated in transport experiments conducted in a large-scale physical aquifer model containing a homogeneous and isotropic sand pack. Two-well tracer tests are conducted using Br− at concentrations ranging from 50 to 1000 mg/1, corresponding to relative densities between 7.5 × 10−5 and 1.5 × 10−3. Analysis of three-dimensional solute concentration data indicates that the center of mass of the Br− plume was displaced downward as the denser tracer solution sank through the sand pack. Plume sinking occurred at all solute concentrations investigated; the magnitude of the vertical displacement increased with increasing Br− concentration of the injected tracer solution. The dynamic collapse of the Br−plume caused by buoyancy forces resulted in increased apparent transverse and longitudinal dispersivities. The results suggest that the possibility of buoyancy-induced flow must be considered when interpreting tracer tests conducted with anion concentrations as low as 50 mg/1. The occurrence of buoyancy-induced flows at such low relative densities also suggest that the phenomenon may be more widespread than is generally recognized.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 10
    Electronic Resource
    Electronic Resource
    Oxford, UK : Blackwell Publishing Ltd
    Ground water 33 (1995), S. 0 
    ISSN: 1745-6584
    Source: Blackwell Publishing Journal Backfiles 1879-2005
    Topics: Energy, Environment Protection, Nuclear Power Engineering , Geosciences
    Notes: Four years of detailed ground-water monitoring at a newly installed, seasonal-use, domestic septic system located on poorly buffered (CaCO3 equivalent content ≤ 1.6 wt.%) lacustrine silt, has revealed the development of an acidic ground-water plume. Acid, generated by the partial oxidation of effluent NH4+ dissolved organic carbon (DOC), and possibly sulfide minerals present in the sediment, has resulted in a distal plume core zone with pH values in the range of 4.4 to 5.0. The acidic zone, where NH4+ does, however, persist (〉 2 mg/1, as N) and where DOC remains elevated (6–13 mg/1), is associated with high average concentrations of the trace metals Fe (4.7 mg/1), Al (1.9 mg/1), and Mn (3.6 mg/1). Attenuation of nitrogen along the plume core flowpath is indicated by a decrease in the N/ Cl− ratio from an effluent value of 1.7, to a plume value of only 0.5 after 4 m of subsurface flow. Increased SO42− levels observed in the zone of N depletion suggest that attenuation can be at least partly attributed to reduction of plume NO3− by oxidation of reduced S present in the sediment. PO43− has not migrated significantly beyond the infiltration bed gravel layer, demonstrating that PO43− mobility is limited in these sediments (retardation factor 〉 10).
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...